SMART: A Situation Model for Algebra Story Problems via Attributed
Grammar
- URL: http://arxiv.org/abs/2012.14011v1
- Date: Sun, 27 Dec 2020 21:03:40 GMT
- Title: SMART: A Situation Model for Algebra Story Problems via Attributed
Grammar
- Authors: Yining Hong, Qing Li, Ran Gong, Daniel Ciao, Siyuan Huang, Song-Chun
Zhu
- Abstract summary: We introduce the concept of a emphsituation model, which originates from psychology studies to represent the mental states of humans in problem-solving.
We show that the proposed model outperforms all previous neural solvers by a large margin while preserving much better interpretability.
- Score: 74.1315776256292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving algebra story problems remains a challenging task in artificial
intelligence, which requires a detailed understanding of real-world situations
and a strong mathematical reasoning capability. Previous neural solvers of math
word problems directly translate problem texts into equations, lacking an
explicit interpretation of the situations, and often fail to handle more
sophisticated situations. To address such limits of neural solvers, we
introduce the concept of a \emph{situation model}, which originates from
psychology studies to represent the mental states of humans in problem-solving,
and propose \emph{SMART}, which adopts attributed grammar as the representation
of situation models for algebra story problems. Specifically, we first train an
information extraction module to extract nodes, attributes, and relations from
problem texts and then generate a parse graph based on a pre-defined attributed
grammar. An iterative learning strategy is also proposed to improve the
performance of SMART further. To rigorously study this task, we carefully
curate a new dataset named \emph{ASP6.6k}. Experimental results on ASP6.6k show
that the proposed model outperforms all previous neural solvers by a large
margin while preserving much better interpretability. To test these models'
generalization capability, we also design an out-of-distribution (OOD)
evaluation, in which problems are more complex than those in the training set.
Our model exceeds state-of-the-art models by 17\% in the OOD evaluation,
demonstrating its superior generalization ability.
Related papers
- Are Deep Neural Networks SMARTer than Second Graders? [85.60342335636341]
We evaluate the abstraction, deduction, and generalization abilities of neural networks in solving visuo-linguistic puzzles designed for children in the 6--8 age group.
Our dataset consists of 101 unique puzzles; each puzzle comprises a picture question, and their solution needs a mix of several elementary skills, including arithmetic, algebra, and spatial reasoning.
Experiments reveal that while powerful deep models offer reasonable performances on puzzles in a supervised setting, they are not better than random accuracy when analyzed for generalization.
arXiv Detail & Related papers (2022-12-20T04:33:32Z) - A Causal Framework to Quantify the Robustness of Mathematical Reasoning
with Language Models [81.15974174627785]
We study the behavior of language models in terms of robustness and sensitivity to direct interventions in the input space.
Our analysis shows that robustness does not appear to continuously improve as a function of size, but the GPT-3 Davinci models (175B) achieve a dramatic improvement in both robustness and sensitivity compared to all other GPT variants.
arXiv Detail & Related papers (2022-10-21T15:12:37Z) - Heterogeneous Line Graph Transformer for Math Word Problems [21.4761673982334]
This paper describes the design and implementation of a new machine learning model for online learning systems.
We aim at improving the intelligent level of the systems by enabling an automated math word problem solver.
arXiv Detail & Related papers (2022-08-11T05:27:05Z) - Tackling Math Word Problems with Fine-to-Coarse Abstracting and
Reasoning [22.127301797950572]
We propose to model a math word problem in a fine-to-coarse manner to capture both the local fine-grained information and the global logical structure of it.
Our model is naturally sensitive to local variations and can better generalize to unseen problem types.
arXiv Detail & Related papers (2022-05-17T12:14:44Z) - NumGLUE: A Suite of Fundamental yet Challenging Mathematical Reasoning
Tasks [37.730939229638224]
We propose NumGLUE, a benchmark that evaluates the performance of AI systems on eight different tasks.
We show that this benchmark is far from being solved with neural models including state-of-the-art large-scale language models.
We hope that NumGLUE will encourage systems that perform robust and general arithmetic reasoning within language.
arXiv Detail & Related papers (2022-04-12T09:36:10Z) - Neural-Symbolic Solver for Math Word Problems with Auxiliary Tasks [130.70449023574537]
Our NS-r consists of a problem reader to encode problems, a programmer to generate symbolic equations, and a symbolic executor to obtain answers.
Along with target expression supervision, our solver is also optimized via 4 new auxiliary objectives to enforce different symbolic reasoning.
arXiv Detail & Related papers (2021-07-03T13:14:58Z) - Recognizing and Verifying Mathematical Equations using Multiplicative
Differential Neural Units [86.9207811656179]
We show that memory-augmented neural networks (NNs) can achieve higher-order, memory-augmented extrapolation, stable performance, and faster convergence.
Our models achieve a 1.53% average improvement over current state-of-the-art methods in equation verification and achieve a 2.22% Top-1 average accuracy and 2.96% Top-5 average accuracy for equation completion.
arXiv Detail & Related papers (2021-04-07T03:50:11Z) - Generating Math Word Problems from Equations with Topic Controlling and
Commonsense Enforcement [11.459200644989227]
We present a novel equation-to-problem text generation model.
In our model, 1) we propose a flexible scheme to effectively encode math equations, we then enhance the equation encoder by a Varitional Autoen-coder (VAE)
arXiv Detail & Related papers (2020-12-14T10:02:11Z) - Machine Number Sense: A Dataset of Visual Arithmetic Problems for
Abstract and Relational Reasoning [95.18337034090648]
We propose a dataset, Machine Number Sense (MNS), consisting of visual arithmetic problems automatically generated using a grammar model--And-Or Graph (AOG)
These visual arithmetic problems are in the form of geometric figures.
We benchmark the MNS dataset using four predominant neural network models as baselines in this visual reasoning task.
arXiv Detail & Related papers (2020-04-25T17:14:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.