Leveraging AI and Intelligent Reflecting Surface for Energy-Efficient
Communication in 6G IoT
- URL: http://arxiv.org/abs/2012.14716v1
- Date: Tue, 29 Dec 2020 11:56:28 GMT
- Title: Leveraging AI and Intelligent Reflecting Surface for Energy-Efficient
Communication in 6G IoT
- Authors: Qianqian Pan, Jun Wu, Xi Zheng, Jianhua Li, Shenghong Li, Athanasios
V. Vasilakos
- Abstract summary: We propose an artificial intelligence (AI) and intelligent reflecting surface (IRS) empowered energy-efficiency communication system for 6G IoT.
First, we design a smart and efficient communication architecture including the IRS-aided data transmission and the AI-driven network resource management mechanisms.
Third, a deep reinforcement learning (DRL) empowered network resource control and allocation scheme is proposed to solve the formulated optimization model.
- Score: 14.027983498089084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ever-increasing data traffic, various delay-sensitive services, and the
massive deployment of energy-limited Internet of Things (IoT) devices have
brought huge challenges to the current communication networks, motivating
academia and industry to move to the sixth-generation (6G) network. With the
powerful capability of data transmission and processing, 6G is considered as an
enabler for IoT communication with low latency and energy cost. In this paper,
we propose an artificial intelligence (AI) and intelligent reflecting surface
(IRS) empowered energy-efficiency communication system for 6G IoT. First, we
design a smart and efficient communication architecture including the IRS-aided
data transmission and the AI-driven network resource management mechanisms.
Second, an energy efficiency-maximizing model under given transmission latency
for 6G IoT system is formulated, which jointly optimizes the settings of all
communication participants, i.e. IoT transmission power, IRS-reflection phase
shift, and BS detection matrix. Third, a deep reinforcement learning (DRL)
empowered network resource control and allocation scheme is proposed to solve
the formulated optimization model. Based on the network and channel status, the
DRL-enabled scheme facilities the energy-efficiency and low-latency
communication. Finally, experimental results verified the effectiveness of our
proposed communication system for 6G IoT.
Related papers
- Resource Efficient Asynchronous Federated Learning for Digital Twin Empowered IoT Network [29.895766751146155]
Digital twin (DT) can provide real-time status and dynamic topology mapping for Internet of Things (IoT) devices.
We develop a dynamic resource scheduling algorithm tailored for the asynchronous federated learning (FL)-based lightweight DT empowered IoT network.
Specifically, our approach aims to minimize a multi-objective function that encompasses both energy consumption and latency.
arXiv Detail & Related papers (2024-08-26T14:28:51Z) - Multiagent Reinforcement Learning with an Attention Mechanism for
Improving Energy Efficiency in LoRa Networks [52.96907334080273]
As the network scale increases, the energy efficiency of LoRa networks decreases sharply due to severe packet collisions.
We propose a transmission parameter allocation algorithm based on multiagent reinforcement learning (MALoRa)
Simulation results demonstrate that MALoRa significantly improves the system EE compared with baseline algorithms.
arXiv Detail & Related papers (2023-09-16T11:37:23Z) - Optimization Design for Federated Learning in Heterogeneous 6G Networks [27.273745760946962]
Federated learning (FL) is anticipated to be a key enabler for achieving ubiquitous AI in 6G networks.
There are several system and statistical heterogeneity challenges for effective and efficient FL implementation in 6G networks.
In this article, we investigate the optimization approaches that can effectively address the challenges.
arXiv Detail & Related papers (2023-03-15T02:18:21Z) - Federated Learning for Energy Constrained IoT devices: A systematic
mapping study [0.0]
Federated Machine Learning (Fed ML) is a new distributed machine learning technique applied to collaboratively train a global model.
Fed ML guarantees its confidentiality, a crucial aspect of network security, which enables it to be used in the context of data-sensitive Internet of Things (IoT)
Most IoT devices are particularly energy constrained, which raises the need to optimize the Fed ML process for efficient training tasks and optimized power consumption.
arXiv Detail & Related papers (2023-01-09T23:30:32Z) - Transformer-Empowered 6G Intelligent Networks: From Massive MIMO
Processing to Semantic Communication [71.21459460829409]
We introduce an emerging deep learning architecture, known as the transformer, and discuss its potential impact on 6G network design.
Specifically, we propose transformer-based solutions for massive multiple-input multiple-output (MIMO) systems and various semantic communication problems in 6G networks.
arXiv Detail & Related papers (2022-05-08T03:22:20Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
Combination of energy harvesting (EH), cognitive radio (CR), and non-orthogonal multiple access (NOMA) is a promising solution to improve energy efficiency.
In this paper, we study the spectrum, energy, and time resource management for deterministic-CR-NOMA IoT systems.
arXiv Detail & Related papers (2021-09-17T08:55:48Z) - RIS-assisted UAV Communications for IoT with Wireless Power Transfer
Using Deep Reinforcement Learning [75.677197535939]
We propose a simultaneous wireless power transfer and information transmission scheme for IoT devices with support from unmanned aerial vehicle (UAV) communications.
In a first phase, IoT devices harvest energy from the UAV through wireless power transfer; and then in a second phase, the UAV collects data from the IoT devices through information transmission.
We formulate a Markov decision process and propose two deep reinforcement learning algorithms to solve the optimization problem of maximizing the total network sum-rate.
arXiv Detail & Related papers (2021-08-05T23:55:44Z) - True-data Testbed for 5G/B5G Intelligent Network [46.09035008165811]
We build the world's first true-data testbed for 5G/B5G intelligent network (TTIN)
TTIN comprises 5G/B5G on-site experimental networks, data acquisition & data warehouse, and AI engine & network optimization.
This paper elaborates on the system architecture and module design of TTIN.
arXiv Detail & Related papers (2020-11-26T06:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.