Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
with Transformers
- URL: http://arxiv.org/abs/2012.15840v2
- Date: Tue, 30 Mar 2021 10:07:30 GMT
- Title: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
with Transformers
- Authors: Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo,
Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao Xiang, Philip H.S. Torr, Li Zhang
- Abstract summary: We treat semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer to encode an image as a sequence of patches.
With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR)
SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes.
- Score: 149.78470371525754
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most recent semantic segmentation methods adopt a fully-convolutional network
(FCN) with an encoder-decoder architecture. The encoder progressively reduces
the spatial resolution and learns more abstract/semantic visual concepts with
larger receptive fields. Since context modeling is critical for segmentation,
the latest efforts have been focused on increasing the receptive field, through
either dilated/atrous convolutions or inserting attention modules. However, the
encoder-decoder based FCN architecture remains unchanged. In this paper, we aim
to provide an alternative perspective by treating semantic segmentation as a
sequence-to-sequence prediction task. Specifically, we deploy a pure
transformer (ie, without convolution and resolution reduction) to encode an
image as a sequence of patches. With the global context modeled in every layer
of the transformer, this encoder can be combined with a simple decoder to
provide a powerful segmentation model, termed SEgmentation TRansformer (SETR).
Extensive experiments show that SETR achieves new state of the art on ADE20K
(50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on
Cityscapes. Particularly, we achieve the first position in the highly
competitive ADE20K test server leaderboard on the day of submission.
Related papers
- Progressive Token Length Scaling in Transformer Encoders for Efficient Universal Segmentation [67.85309547416155]
A powerful architecture for universal segmentation relies on transformers that encode multi-scale image features and decode object queries into mask predictions.
Mask2Former uses 50% of its compute only on the transformer encoder.
This is due to the retention of a full-length token-level representation of all backbone feature scales at each encoder layer.
We propose PRO-SCALE to reduce computations by a large margin with minimal sacrifice in performance.
arXiv Detail & Related papers (2024-04-23T01:34:20Z) - SegViTv2: Exploring Efficient and Continual Semantic Segmentation with
Plain Vision Transformers [76.13755422671822]
This paper investigates the capability of plain Vision Transformers (ViTs) for semantic segmentation using the encoder-decoder framework.
We introduce a novel Attention-to-Mask (atm) module to design a lightweight decoder effective for plain ViT.
Our decoder outperforms the popular decoder UPerNet using various ViT backbones while consuming only about $5%$ of the computational cost.
arXiv Detail & Related papers (2023-06-09T22:29:56Z) - Dynamic Grained Encoder for Vision Transformers [150.02797954201424]
This paper introduces sparse queries for vision transformers to exploit the intrinsic spatial redundancy of natural images.
We propose a Dynamic Grained for vision transformers, which can adaptively assign a suitable number of queries to each spatial region.
Our encoder allows the state-of-the-art vision transformers to reduce computational complexity by 40%-60% while maintaining comparable performance on image classification.
arXiv Detail & Related papers (2023-01-10T07:55:29Z) - Fully Transformer Networks for Semantic ImageSegmentation [26.037770622551882]
We explore a novel framework for semantic image segmentation, which is encoder-decoder based Fully Transformer Networks (FTN)
We propose a Pyramid Group Transformer (PGT) as the encoder for progressively learning hierarchical features, while reducing the computation complexity of the standard visual transformer(ViT)
Then, we propose a Feature Pyramid Transformer (FPT) to fuse semantic-level and spatial-level information from multiple levels of the PGT encoder for semantic image segmentation.
arXiv Detail & Related papers (2021-06-08T05:15:28Z) - Segmenter: Transformer for Semantic Segmentation [79.9887988699159]
We introduce Segmenter, a transformer model for semantic segmentation.
We build on the recent Vision Transformer (ViT) and extend it to semantic segmentation.
It outperforms the state of the art on the challenging ADE20K dataset and performs on-par on Pascal Context and Cityscapes.
arXiv Detail & Related papers (2021-05-12T13:01:44Z) - Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation [63.46694853953092]
Swin-Unet is an Unet-like pure Transformer for medical image segmentation.
tokenized image patches are fed into the Transformer-based U-shaped decoder-Decoder architecture.
arXiv Detail & Related papers (2021-05-12T09:30:26Z) - Transformer Meets DCFAM: A Novel Semantic Segmentation Scheme for
Fine-Resolution Remote Sensing Images [6.171417925832851]
We introduce the Swin Transformer as the backbone to fully extract the context information.
We also design a novel decoder named densely connected feature aggregation module (DCFAM) to restore the resolution and generate the segmentation map.
arXiv Detail & Related papers (2021-04-25T11:34:22Z) - UNETR: Transformers for 3D Medical Image Segmentation [8.59571749685388]
We introduce a novel architecture, dubbed as UNEt TRansformers (UNETR), that utilizes a pure transformer as the encoder to learn sequence representations of the input volume.
We have extensively validated the performance of our proposed model across different imaging modalities.
arXiv Detail & Related papers (2021-03-18T20:17:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.