Understanding Few-Shot Commonsense Knowledge Models
- URL: http://arxiv.org/abs/2101.00297v1
- Date: Fri, 1 Jan 2021 19:01:09 GMT
- Title: Understanding Few-Shot Commonsense Knowledge Models
- Authors: Jeff Da, Ronan Le Bras, Ximing Lu, Yejin Choi, Antoine Bosselut
- Abstract summary: We investigate training commonsense knowledge models in a few-shot setting.
We find that human quality ratings for knowledge produced from a few-shot trained system can achieve performance within 6% of knowledge produced from fully supervised systems.
- Score: 39.31365020474205
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Providing natural language processing systems with commonsense knowledge is a
critical challenge for achieving language understanding. Recently, commonsense
knowledge models have emerged as a suitable approach for hypothesizing
situation-relevant commonsense knowledge on-demand in natural language
applications. However, these systems are limited by the fixed set of relations
captured by schemas of the knowledge bases on which they're trained.
To address this limitation, we investigate training commonsense knowledge
models in a few-shot setting with limited tuples per commonsense relation in
the graph. We perform five separate studies on different dimensions of few-shot
commonsense knowledge learning, providing a roadmap on best practices for
training these systems efficiently. Importantly, we find that human quality
ratings for knowledge produced from a few-shot trained system can achieve
performance within 6% of knowledge produced from fully supervised systems. This
few-shot performance enables coverage of a wide breadth of relations in future
commonsense systems.
Related papers
- Knowledge Tagging with Large Language Model based Multi-Agent System [17.53518487546791]
This paper investigates the use of a multi-agent system to address the limitations of previous algorithms.
We highlight the significant potential of an LLM-based multi-agent system in overcoming the challenges that previous methods have encountered.
arXiv Detail & Related papers (2024-09-12T21:39:01Z) - Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
Large Language Models (LLMs) possess extensive knowledge and strong capabilities in performing in-context reasoning.
This paper focuses on a significant aspect of out-of-context reasoning: Out-of-Context Knowledge Reasoning (OCKR), which is to combine multiple knowledge to infer new knowledge.
arXiv Detail & Related papers (2024-06-11T15:58:59Z) - Commonsense Knowledge Transfer for Pre-trained Language Models [83.01121484432801]
We introduce commonsense knowledge transfer, a framework to transfer the commonsense knowledge stored in a neural commonsense knowledge model to a general-purpose pre-trained language model.
It first exploits general texts to form queries for extracting commonsense knowledge from the neural commonsense knowledge model.
It then refines the language model with two self-supervised objectives: commonsense mask infilling and commonsense relation prediction.
arXiv Detail & Related papers (2023-06-04T15:44:51Z) - Knowledge-Grounded Dialogue Generation with a Unified Knowledge
Representation [78.85622982191522]
Existing systems perform poorly on unseen topics due to limited topics covered in the training data.
We present PLUG, a language model that homogenizes different knowledge sources to a unified knowledge representation.
It can achieve comparable performance with state-of-the-art methods under a fully-supervised setting.
arXiv Detail & Related papers (2021-12-15T07:11:02Z) - Generated Knowledge Prompting for Commonsense Reasoning [53.88983683513114]
We propose generating knowledge statements directly from a language model with a generic prompt format.
This approach improves performance of both off-the-shelf and finetuned language models on four commonsense reasoning tasks.
Notably, we find that a model's predictions can improve when using its own generated knowledge.
arXiv Detail & Related papers (2021-10-15T21:58:03Z) - Language Models as a Knowledge Source for Cognitive Agents [9.061356032792954]
Language models (LMs) are sentence-completion engines trained on massive corpora.
This paper outlines the challenges and opportunities for using language models as a new knowledge source for cognitive systems.
It also identifies possible ways to improve knowledge extraction from language models using the capabilities provided by cognitive systems.
arXiv Detail & Related papers (2021-09-17T01:12:34Z) - DISCOS: Bridging the Gap between Discourse Knowledge and Commonsense
Knowledge [42.08569149041291]
We propose an alternative commonsense knowledge acquisition framework DISCOS.
DISCOS populates expensive commonsense knowledge to more affordable linguistic knowledge resources.
We can acquire 3.4M ATOMIC-like inferential commonsense knowledge by populating ATOMIC on the core part of ASER.
arXiv Detail & Related papers (2021-01-01T03:30:38Z) - Unsupervised Commonsense Question Answering with Self-Talk [71.63983121558843]
We propose an unsupervised framework based on self-talk as a novel alternative to commonsense tasks.
Inspired by inquiry-based discovery learning, our approach inquires language models with a number of information seeking questions.
Empirical results demonstrate that the self-talk procedure substantially improves the performance of zero-shot language model baselines.
arXiv Detail & Related papers (2020-04-11T20:43:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.