Representation Learning of Reconstructed Graphs Using Random Walk Graph
Convolutional Network
- URL: http://arxiv.org/abs/2101.00417v1
- Date: Sat, 2 Jan 2021 10:31:14 GMT
- Title: Representation Learning of Reconstructed Graphs Using Random Walk Graph
Convolutional Network
- Authors: Xing Li, Wei Wei, Xiangnan Feng, Zhiming Zheng
- Abstract summary: We propose wGCN -- a novel framework that utilizes random walk to obtain the node-specific mesoscopic structures of the graph.
We believe that combining high-order local structural information can more efficiently explore the potential of the network.
- Score: 12.008472517000651
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphs are often used to organize data because of their simple topological
structure, and therefore play a key role in machine learning. And it turns out
that the low-dimensional embedded representation obtained by graph
representation learning are extremely useful in various typical tasks, such as
node classification, content recommendation and link prediction. However, the
existing methods mostly start from the microstructure (i.e., the edges) in the
graph, ignoring the mesoscopic structure (high-order local structure). Here, we
propose wGCN -- a novel framework that utilizes random walk to obtain the
node-specific mesoscopic structures of the graph, and utilizes these mesoscopic
structures to reconstruct the graph And organize the characteristic information
of the nodes. Our method can effectively generate node embeddings for
previously unseen data, which has been proven in a series of experiments
conducted on citation networks and social networks (our method has advantages
over baseline methods). We believe that combining high-order local structural
information can more efficiently explore the potential of the network, which
will greatly improve the learning efficiency of graph neural network and
promote the establishment of new learning models.
Related papers
- GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
This paper introduces the mathematical definition of this novel problem setting.
We devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs.
The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning.
arXiv Detail & Related papers (2023-06-20T03:33:22Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
This paper proposes a novel Structure-Aware Heterogeneous Graph Neural Network (SHGNN) to address the above limitations.
We first utilize a feature propagation module to capture the local structure information of intermediate nodes in the meta-path.
Next, we use a tree-attention aggregator to incorporate the graph structure information into the aggregation module on the meta-path.
Finally, we leverage a meta-path aggregator to fuse the information aggregated from different meta-paths.
arXiv Detail & Related papers (2021-12-12T14:18:18Z) - Inferential SIR-GN: Scalable Graph Representation Learning [0.4699313647907615]
Graph representation learning methods generate numerical vector representations for the nodes in a network.
In this work, we propose Inferential SIR-GN, a model which is pre-trained on random graphs, then computes node representations rapidly.
We demonstrate that the model is able to capture node's structural role information, and show excellent performance at node and graph classification tasks, on unseen networks.
arXiv Detail & Related papers (2021-11-08T20:56:37Z) - Edge-Featured Graph Attention Network [7.0629162428807115]
We present edge-featured graph attention networks (EGATs) to extend the use of graph neural networks to those tasks learning on graphs with both node and edge features.
By reforming the model structure and the learning process, the new models can accept node and edge features as inputs, incorporate the edge information into feature representations, and iterate both node and edge features in a parallel but mutual way.
arXiv Detail & Related papers (2021-01-19T15:08:12Z) - Node2Seq: Towards Trainable Convolutions in Graph Neural Networks [59.378148590027735]
We propose a graph network layer, known as Node2Seq, to learn node embeddings with explicitly trainable weights for different neighboring nodes.
For a target node, our method sorts its neighboring nodes via attention mechanism and then employs 1D convolutional neural networks (CNNs) to enable explicit weights for information aggregation.
In addition, we propose to incorporate non-local information for feature learning in an adaptive manner based on the attention scores.
arXiv Detail & Related papers (2021-01-06T03:05:37Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z) - Representation Learning of Graphs Using Graph Convolutional Multilayer
Networks Based on Motifs [17.823543937167848]
mGCMN is a novel framework which utilizes node feature information and the higher order local structure of the graph.
It will greatly improve the learning efficiency of the graph neural network and promote a brand-new learning mode establishment.
arXiv Detail & Related papers (2020-07-31T04:18:20Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Progressive Graph Convolutional Networks for Semi-Supervised Node
Classification [97.14064057840089]
Graph convolutional networks have been successful in addressing graph-based tasks such as semi-supervised node classification.
We propose a method to automatically build compact and task-specific graph convolutional networks.
arXiv Detail & Related papers (2020-03-27T08:32:16Z) - Convolutional Kernel Networks for Graph-Structured Data [37.13712126432493]
We introduce a family of multilayer graph kernels and establish new links between graph convolutional neural networks and kernel methods.
Our approach generalizes convolutional kernel networks to graph-structured data, by representing graphs as a sequence of kernel feature maps.
Our model can also be trained end-to-end on large-scale data, leading to new types of graph convolutional neural networks.
arXiv Detail & Related papers (2020-03-11T09:44:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.