Expectation Synchronization Synthesis in Non-Markovian Open Quantum
Systems
- URL: http://arxiv.org/abs/2101.00833v2
- Date: Thu, 11 Feb 2021 03:15:12 GMT
- Title: Expectation Synchronization Synthesis in Non-Markovian Open Quantum
Systems
- Authors: Shikun Zhang, Kun Liu, Daoyi Dong, Xiaoxue Feng, Feng Pan
- Abstract summary: We investigate the problem of engineering synchronization in non-Markovian quantum systems.
For two homogenous subsystems, synchronization can always be synthesized without designing direct Hamiltonian coupling.
System parameters are explicitly designed to achieve quantum synchronization.
- Score: 15.285806487845036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this article, we investigate the problem of engineering synchronization in
non-Markovian quantum systems. First, a time-convoluted linear quantum
stochastic differential equation is derived which describes the Heisenberg
evolution of a localized quantum system driven by multiple colored noise
inputs. Then, we define quantum expectation synchronization in an augmented
system consisting of two subsystems. We prove that, for two homogenous
subsystems, synchronization can always be synthesized without designing direct
Hamiltonian coupling given that the degree of non-Markovianity is below a
certain threshold. System parameters are explicitly designed to achieve quantum
synchronization. Also, a numerical example is presented to illustrate our
results.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Quantum synchronization via Active-Passive-Decomposition configuration:
An open quantum system study [10.661359913434032]
We show that two or more quantum systems may be synchronized when the quantum systems of interest are embedded in dissipative environments.
We numerically show in an optomechanical setup that the complete synchronization can be realized in quantum mechanical resonators.
arXiv Detail & Related papers (2023-11-15T05:04:53Z) - Decoherence time in quantum harmonic oscillators as quantum memory
systems [0.7252027234425334]
This paper is concerned with open quantum harmonic oscillators (OQHOs) described by linear quantum differential equations.
In a more realistic case of system-environment coupling, we define a memory decoherence horizon as a typical time for a mean-square deviation of the system variables.
We consider the decoherence time over the energy and coupling matrix of the OQHO as a memory system in its storage phase and obtain a condition under which the zero Hamiltonian delivers a suboptimal solution.
arXiv Detail & Related papers (2023-10-26T08:29:42Z) - Stochastic approach to evolution of a quantum system interacting with a
wave packet in squeezed number state [0.0]
We determine filtering and master equations for a quantum system interacting with wave packet of light in a continuous-mode squeezed number state.
We formulate the problem of conditional evolution of a quantum system making use of model of repeated interactions and measurements.
arXiv Detail & Related papers (2023-03-21T19:42:15Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Observing Quantum Synchronization of a Single Trapped-Ion Qubit [6.814631744316089]
We show that a qubit can be synchronized to an external driving signal by using a trapped-ion system.
By synchronizing the basic unit of quantum information, our research opens up the possibility of applying quantum synchronization to large-scale quantum networks.
arXiv Detail & Related papers (2022-05-12T07:54:12Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Preserving quantum correlations and coherence with non-Markovianity [50.591267188664666]
We demonstrate the usefulness of non-Markovianity for preserving correlations and coherence in quantum systems.
For covariant qubit evolutions, we show that non-Markovianity can be used to preserve quantum coherence at all times.
arXiv Detail & Related papers (2021-06-25T11:52:51Z) - Synchronisation phase as an indicator of persistent quantum correlations
between subsystems [68.8204255655161]
Spontaneous synchronisation is a collective phenomenon that can occur in both dynamical classical and quantum systems.
We show that our analysis applies to a variety of spontaneously synchronising open quantum systems.
arXiv Detail & Related papers (2020-06-29T17:21:32Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Quantum $\varphi$-synchronization in coupled optomechanical system with
periodic modulation [0.0]
We introduce and characterize the measure of a more generalized quantum synchronization called quantum $varphi$-synchronization.
Naturally, quantum synchronization and quantum anti-synchronization become special cases of quantum $varphi$-synchronization.
arXiv Detail & Related papers (2020-01-29T13:02:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.