Does Invariant Risk Minimization Capture Invariance?
- URL: http://arxiv.org/abs/2101.01134v2
- Date: Fri, 26 Feb 2021 23:21:48 GMT
- Title: Does Invariant Risk Minimization Capture Invariance?
- Authors: Pritish Kamath and Akilesh Tangella and Danica J. Sutherland and
Nathan Srebro
- Abstract summary: We show that the Invariant Risk Minimization (IRM) formulation of Arjovsky et al. can fail to capture "natural" invariances.
This can lead to worse generalization on new environments.
- Score: 23.399091822468407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that the Invariant Risk Minimization (IRM) formulation of Arjovsky et
al. (2019) can fail to capture "natural" invariances, at least when used in its
practical "linear" form, and even on very simple problems which directly follow
the motivating examples for IRM. This can lead to worse generalization on new
environments, even when compared to unconstrained ERM. The issue stems from a
significant gap between the linear variant (as in their concrete method IRMv1)
and the full non-linear IRM formulation. Additionally, even when capturing the
"right" invariances, we show that it is possible for IRM to learn a sub-optimal
predictor, due to the loss function not being invariant across environments.
The issues arise even when measuring invariance on the population
distributions, but are exacerbated by the fact that IRM is extremely fragile to
sampling.
Related papers
- Continual Invariant Risk Minimization [46.051656238770086]
Empirical risk minimization can lead to poor generalization behavior on unseen environments if the learned model does not capture invariant feature representations.
Invariant risk minimization (IRM) is a recent proposal for discovering environment-invariant representations.
arXiv Detail & Related papers (2023-10-21T11:44:47Z) - On the Variance, Admissibility, and Stability of Empirical Risk
Minimization [80.26309576810844]
Empirical Risk Minimization (ERM) with squared loss may attain minimax suboptimal error rates.
We show that under mild assumptions, the suboptimality of ERM must be due to large bias rather than variance.
We also show that our estimates imply stability of ERM, complementing the main result of Caponnetto and Rakhlin (2006) for non-Donsker classes.
arXiv Detail & Related papers (2023-05-29T15:25:48Z) - Equivariance and Invariance Inductive Bias for Learning from
Insufficient Data [65.42329520528223]
We show why insufficient data renders the model more easily biased to the limited training environments that are usually different from testing.
We propose a class-wise invariant risk minimization (IRM) that efficiently tackles the challenge of missing environmental annotation in conventional IRM.
arXiv Detail & Related papers (2022-07-25T15:26:19Z) - The Missing Invariance Principle Found -- the Reciprocal Twin of
Invariant Risk Minimization [7.6146285961466]
In Risk Minimization (IRM) can fail to generalize poorly to out-of-distribution (OOD) data.
We show that MRI-v1 can guarantee invariant predictors given sufficient environments.
We also demonstrate that MRI strongly out-performs IRM and achieves a near-optimal OOD in image-based problems.
arXiv Detail & Related papers (2022-05-29T00:14:51Z) - Heterogeneous Risk Minimization [25.5458915855661]
Invariant learning methods for out-of-distribution generalization have been proposed by leveraging multiple training environments to find invariant relationships.
Modern datasets are assembled by merging data from multiple sources without explicit source labels.
We propose Heterogeneous Risk Minimization (HRM) framework to achieve joint learning of latent heterogeneity among the data and invariant relationship.
arXiv Detail & Related papers (2021-05-09T02:51:36Z) - Meta-Learned Invariant Risk Minimization [12.6484257912092]
Empirical Risk Minimization (ERM) based machine learning algorithms have suffered from weak generalization performance on data obtained from out-of-distribution (OOD)
In this paper, we propose a novel meta-learning based approach for IRM.
We show that our algorithm not only has better OOD generalization performance than IRMv1 and all IRM variants, but also addresses the weakness of IRMv1 with improved stability.
arXiv Detail & Related papers (2021-03-24T02:52:48Z) - On the Minimal Error of Empirical Risk Minimization [90.09093901700754]
We study the minimal error of the Empirical Risk Minimization (ERM) procedure in the task of regression.
Our sharp lower bounds shed light on the possibility (or impossibility) of adapting to simplicity of the model generating the data.
arXiv Detail & Related papers (2021-02-24T04:47:55Z) - Empirical or Invariant Risk Minimization? A Sample Complexity
Perspective [49.43806345820883]
It is unclear when in-variant risk generalization (IRM) should be preferred over the widely-employed empirical risk minimization (ERM) framework.
We find that depending on the type of data generation mechanism, the two approaches might have very different finite sample and behavior.
We further investigate how different factors -- the number of environments, complexity of the model, and IRM penalty weight -- impact the sample complexity of IRM in relation to its distance from the OOD solutions.
arXiv Detail & Related papers (2020-10-30T17:55:30Z) - The Risks of Invariant Risk Minimization [52.7137956951533]
Invariant Risk Minimization is an objective based on the idea for learning deep, invariant features of data.
We present the first analysis of classification under the IRM objective--as well as these recently proposed alternatives--under a fairly natural and general model.
We show that IRM can fail catastrophically unless the test data are sufficiently similar to the training distribution--this is precisely the issue that it was intended to solve.
arXiv Detail & Related papers (2020-10-12T14:54:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.