Stochastic Optimization for Vaccine and Testing Kit Allocation for the
COVID-19 Pandemic
- URL: http://arxiv.org/abs/2101.01204v1
- Date: Mon, 4 Jan 2021 19:08:32 GMT
- Title: Stochastic Optimization for Vaccine and Testing Kit Allocation for the
COVID-19 Pandemic
- Authors: Lawrence Thul, Warren Powell
- Abstract summary: SARS-CoV-2 virus has exposed many flaws in the decision-making strategies used to distribute resources to combat global health crises.
In this paper, we leverage reinforcement learning and optimization to improve upon the allocation strategies for various resources.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The pandemic caused by the SARS-CoV-2 virus has exposed many flaws in the
decision-making strategies used to distribute resources to combat global health
crises. In this paper, we leverage reinforcement learning and optimization to
improve upon the allocation strategies for various resources. In particular, we
consider a problem where a central controller must decide where to send testing
kits to learn about the uncertain states of the world (active learning); then,
use the new information to construct beliefs about the states and decide where
to allocate resources. We propose a general model coupled with a tunable
lookahead policy for making vaccine allocation decisions without perfect
knowledge about the state of the world. The lookahead policy is compared to a
population-based myopic policy which is more likely to be similar to the
present strategies in practice. Each vaccine allocation policy works in
conjunction with a testing kit allocation policy to perform active learning.
Our simulation results demonstrate that an optimization-based lookahead
decision making strategy will outperform the presented myopic policy.
Related papers
- Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Local Optimization Achieves Global Optimality in Multi-Agent
Reinforcement Learning [139.53668999720605]
We present a multi-agent PPO algorithm in which the local policy of each agent is updated similarly to vanilla PPO.
We prove that with standard regularity conditions on the Markov game and problem-dependent quantities, our algorithm converges to the globally optimal policy at a sublinear rate.
arXiv Detail & Related papers (2023-05-08T16:20:03Z) - Evaluating COVID-19 vaccine allocation policies using Bayesian $m$-top
exploration [53.122045119395594]
We present a novel technique for evaluating vaccine allocation strategies using a multi-armed bandit framework.
$m$-top exploration allows the algorithm to learn $m$ policies for which it expects the highest utility.
We consider the Belgian COVID-19 epidemic using the individual-based model STRIDE, where we learn a set of vaccination policies.
arXiv Detail & Related papers (2023-01-30T12:22:30Z) - Adversarial Learning-based Stance Classifier for COVID-19-related Health
Policies [14.558584240713154]
We propose an adversarial learning-based stance classifier to automatically identify the public's attitudes toward COVID-19-related health policies.
To enhance the model's deeper understanding, we incorporate policy descriptions as external knowledge into the model.
We evaluate the performance of a broad range of baselines on the stance detection task for COVID-19-related health policies.
arXiv Detail & Related papers (2022-09-10T10:27:21Z) - CAMEO: Curiosity Augmented Metropolis for Exploratory Optimal Policies [62.39667564455059]
We consider and study a distribution of optimal policies.
In experimental simulations we show that CAMEO indeed obtains policies that all solve classic control problems.
We further show that the different policies we sample present different risk profiles, corresponding to interesting practical applications in interpretability.
arXiv Detail & Related papers (2022-05-19T09:48:56Z) - Exploring the Pareto front of multi-objective COVID-19 mitigation
policies using reinforcement learning [1.7056617973440933]
Infectious disease outbreaks can have a disruptive impact on public health and societal processes.
Current research focuses on optimizing policies with a single objective, such as the pathogen's attack rate.
We apply deep multi-objective reinforcement learning and build upon a state-of-the-art algorithm to learn a set of solutions.
arXiv Detail & Related papers (2022-04-11T11:55:06Z) - Reinforcement Learning with Heterogeneous Data: Estimation and Inference [84.72174994749305]
We introduce the K-Heterogeneous Markov Decision Process (K-Hetero MDP) to address sequential decision problems with population heterogeneity.
We propose the Auto-Clustered Policy Evaluation (ACPE) for estimating the value of a given policy, and the Auto-Clustered Policy Iteration (ACPI) for estimating the optimal policy in a given policy class.
We present simulations to support our theoretical findings, and we conduct an empirical study on the standard MIMIC-III dataset.
arXiv Detail & Related papers (2022-01-31T20:58:47Z) - Machine Learning-Powered Mitigation Policy Optimization in
Epidemiological Models [33.88734751290751]
We propose a new approach for obtaining optimal policy recommendations based on epidemiological models.
We find that such a look-ahead strategy infers non-trivial policies that adhere well to the constraints specified.
arXiv Detail & Related papers (2020-10-16T16:27:17Z) - Multi-Objective Model-based Reinforcement Learning for Infectious
Disease Control [19.022696762983017]
Severe infectious diseases such as the novel coronavirus (COVID-19) pose a huge threat to public health.
Stringent control measures, such as school closures and stay-at-home orders, while having significant effects, also bring huge economic losses.
We propose a Multi-Objective Model-based Reinforcement Learning framework to facilitate data-driven decision-making and minimize the overall long-term cost.
arXiv Detail & Related papers (2020-09-09T23:55:27Z) - When and How to Lift the Lockdown? Global COVID-19 Scenario Analysis and
Policy Assessment using Compartmental Gaussian Processes [111.69190108272133]
coronavirus disease 2019 (COVID-19) global pandemic has led many countries to impose unprecedented lockdown measures.
Data-driven models that predict COVID-19 fatalities under different lockdown policy scenarios are essential.
This paper develops a Bayesian model for predicting the effects of COVID-19 lockdown policies in a global context.
arXiv Detail & Related papers (2020-05-13T18:21:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.