Learn by Guessing: Multi-Step Pseudo-Label Refinement for Person
Re-Identification
- URL: http://arxiv.org/abs/2101.01215v1
- Date: Mon, 4 Jan 2021 20:00:33 GMT
- Title: Learn by Guessing: Multi-Step Pseudo-Label Refinement for Person
Re-Identification
- Authors: Tiago de C. G. Pereira and Teofilo E. de Campos
- Abstract summary: A promising approach relies on the use of unsupervised learning as part of the pipeline.
In this work, we propose a multi-step pseudo-label refinement method to select the best possible clusters.
We surpass state-of-the-art for UDA Re-ID by 3.4% on Market1501-DukeMTMC datasets.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised Domain Adaptation (UDA) methods for person Re-Identification
(Re-ID) rely on target domain samples to model the marginal distribution of the
data. To deal with the lack of target domain labels, UDA methods leverage
information from labeled source samples and unlabeled target samples. A
promising approach relies on the use of unsupervised learning as part of the
pipeline, such as clustering methods. The quality of the clusters clearly plays
a major role in methods performance, but this point has been overlooked. In
this work, we propose a multi-step pseudo-label refinement method to select the
best possible clusters and keep improving them so that these clusters become
closer to the class divisions without knowledge of the class labels. Our
refinement method includes a cluster selection strategy and a camera-based
normalization method which reduces the within-domain variations caused by the
use of multiple cameras in person Re-ID. This allows our method to reach
state-of-the-art UDA results on DukeMTMC-Market1501 (source-target). We surpass
state-of-the-art for UDA Re-ID by 3.4% on Market1501-DukeMTMC datasets, which
is a more challenging adaptation setup because the target domain (DukeMTMC) has
eight distinct cameras. Furthermore, the camera-based normalization method
causes a significant reduction in the number of iterations required for
training convergence.
Related papers
- Polycentric Clustering and Structural Regularization for Source-free
Unsupervised Domain Adaptation [20.952542421577487]
Source-Free Domain Adaptation (SFDA) aims to solve the domain adaptation problem by transferring the knowledge learned from a pre-trained source model to an unseen target domain.
Most existing methods assign pseudo-labels to the target data by generating feature prototypes.
In this paper, a novel framework named PCSR is proposed to tackle SFDA via a novel intra-class Polycentric Clustering and Structural Regularization strategy.
arXiv Detail & Related papers (2022-10-14T02:20:48Z) - Cooperative Self-Training for Multi-Target Adaptive Semantic
Segmentation [26.79776306494929]
We propose a self-training strategy that employs pseudo-labels to induce cooperation among multiple domain-specific classifiers.
We employ feature stylization as an efficient way to generate image views that forms an integral part of self-training.
arXiv Detail & Related papers (2022-10-04T13:03:17Z) - Uncertainty-aware Clustering for Unsupervised Domain Adaptive Object
Re-identification [123.75412386783904]
State-of-the-art object Re-ID approaches adopt clustering algorithms to generate pseudo-labels for the unlabeled target domain.
We propose an uncertainty-aware clustering framework (UCF) for UDA tasks.
Our UCF method consistently achieves state-of-the-art performance in multiple UDA tasks for object Re-ID.
arXiv Detail & Related papers (2021-08-22T09:57:14Z) - Unsupervised and self-adaptative techniques for cross-domain person
re-identification [82.54691433502335]
Person Re-Identification (ReID) across non-overlapping cameras is a challenging task.
Unsupervised Domain Adaptation (UDA) is a promising alternative, as it performs feature-learning adaptation from a model trained on a source to a target domain without identity-label annotation.
In this paper, we propose a novel UDA-based ReID method that takes advantage of triplets of samples created by a new offline strategy.
arXiv Detail & Related papers (2021-03-21T23:58:39Z) - Your Classifier can Secretly Suffice Multi-Source Domain Adaptation [72.47706604261992]
Multi-Source Domain Adaptation (MSDA) deals with the transfer of task knowledge from multiple labeled source domains to an unlabeled target domain.
We present a different perspective to MSDA wherein deep models are observed to implicitly align the domains under label supervision.
arXiv Detail & Related papers (2021-03-20T12:44:13Z) - Dual-Refinement: Joint Label and Feature Refinement for Unsupervised
Domain Adaptive Person Re-Identification [51.98150752331922]
Unsupervised domain adaptive (UDA) person re-identification (re-ID) is a challenging task due to the missing of labels for the target domain data.
We propose a novel approach, called Dual-Refinement, that jointly refines pseudo labels at the off-line clustering phase and features at the on-line training phase.
Our method outperforms the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-12-26T07:35:35Z) - Camera-aware Proxies for Unsupervised Person Re-Identification [60.26031011794513]
This paper tackles the purely unsupervised person re-identification (Re-ID) problem that requires no annotations.
We propose to split each single cluster into multiple proxies and each proxy represents the instances coming from the same camera.
Based on the camera-aware proxies, we design both intra- and inter-camera contrastive learning components for our Re-ID model.
arXiv Detail & Related papers (2020-12-19T12:37:04Z) - Unsupervised Domain Adaptation for Person Re-Identification through
Source-Guided Pseudo-Labeling [2.449909275410288]
Person Re-Identification (re-ID) aims at retrieving images of the same person taken by different cameras.
Unsupervised Domain Adaptation (UDA) is an interesting research direction for this challenge as it avoids a costly annotation of the target data.
We introduce a framework which relies on a two-branch architecture optimizing classification and triplet loss based metric learning in source and target domains.
arXiv Detail & Related papers (2020-09-20T14:54:42Z) - Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain
Adaptation on Person Re-identification [56.97651712118167]
Person re-identification (re-ID) aims at identifying the same persons' images across different cameras.
domain diversities between different datasets pose an evident challenge for adapting the re-ID model trained on one dataset to another one.
We propose an unsupervised framework, Mutual Mean-Teaching (MMT), to learn better features from the target domain via off-line refined hard pseudo labels and on-line refined soft pseudo labels.
arXiv Detail & Related papers (2020-01-06T12:42:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.