Comparing Classification Models on Kepler Data
- URL: http://arxiv.org/abs/2101.01904v2
- Date: Thu, 7 Jan 2021 04:11:53 GMT
- Title: Comparing Classification Models on Kepler Data
- Authors: Rohan Saha
- Abstract summary: Even though the original Kepler mission ended due to mechanical failures, the Kepler satellite continues to collect data.
Using classification models, we can understand the features exoplanets possess and then use those features to investigate further.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Even though the original Kepler mission ended due to mechanical failures, the
Kepler satellite continues to collect data. Using classification models, we can
understand the features exoplanets possess and then use those features to
investigate further for any more information on the candidate planet. Based on
the classification model, the idea is to find out the probability of the planet
under observation being a candidate for an exoplanet or a false positive. If
the model predicts that the observation is a candidate for being an exoplanet,
then the further investigation can be conducted. From the model, we can narrow
down the features that might explain the difference between a candidate and a
false-positive which ultimately helps us to increase the efficiency of any
model and fine-tune the model and ultimately the process of searching for any
future exoplanets. The model comparison is supported by McNemar's test for
checking significance.
Related papers
- Confidence-Based Model Selection: When to Take Shortcuts for
Subpopulation Shifts [119.22672589020394]
We propose COnfidence-baSed MOdel Selection (CosMoS), where model confidence can effectively guide model selection.
We evaluate CosMoS on four datasets with spurious correlations, each with multiple test sets with varying levels of data distribution shift.
arXiv Detail & Related papers (2023-06-19T18:48:15Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Revisiting mass-radius relationships for exoplanet populations: a
machine learning insight [0.0]
We employ efficient machine learning approaches to analyze a dataset comprising 762 confirmed exoplanets and eight Solar System planets.
By applying different unsupervised clustering algorithms, we classify the data into two main classes:'small' and 'giant' planets.
Our analysis highlights that planetary mass, orbital period, and stellar mass play crucial roles in predicting exoplanet radius.
arXiv Detail & Related papers (2023-01-17T19:15:06Z) - Predictive World Models from Real-World Partial Observations [66.80340484148931]
We present a framework for learning a probabilistic predictive world model for real-world road environments.
While prior methods require complete states as ground truth for learning, we present a novel sequential training method to allow HVAEs to learn to predict complete states from partially observed states only.
arXiv Detail & Related papers (2023-01-12T02:07:26Z) - Spuriosity Rankings: Sorting Data to Measure and Mitigate Biases [62.54519787811138]
We present a simple but effective method to measure and mitigate model biases caused by reliance on spurious cues.
We rank images within their classes based on spuriosity, proxied via deep neural features of an interpretable network.
Our results suggest that model bias due to spurious feature reliance is influenced far more by what the model is trained on than how it is trained.
arXiv Detail & Related papers (2022-12-05T23:15:43Z) - Locating Hidden Exoplanets in ALMA Data Using Machine Learning [10.316742952272394]
We demonstrate that machine learning can quickly and accurately detect the presence of planets.
We train our model on synthetic images generated from simulations and apply it to real observations to identify forming planets in real systems.
arXiv Detail & Related papers (2022-11-17T14:02:16Z) - Automation Of Transiting Exoplanet Detection, Identification and
Habitability Assessment Using Machine Learning Approaches [0.0]
We analyze the light intensity curves from stars captured by the Kepler telescope to detect the potential curves that exhibit the characteristics of an existence of a possible planetary system.
We address the automation of exoplanet identification and habitability determination by leveraging several state-of-art machine learning and ensemble approaches.
arXiv Detail & Related papers (2021-12-06T19:00:12Z) - Exoplanet atmosphere evolution: emulation with random forests [0.0]
Atmospheric mass-loss plays a leading role in sculpting the demographics of small, close-in exoplanets.
We implement random forests trained on atmospheric evolution models to predict a given planet's final radius and atmospheric mass.
Our new approach opens the door to highly sophisticated models of atmospheric evolution being used in demographic analysis.
arXiv Detail & Related papers (2021-10-28T14:39:19Z) - On planetary systems as ordered sequences [7.216830424040808]
We consider what information belongs to the configuration, or ordering, of 4286 Kepler planets in their 3277 planetary systems.
We train a neural network model to predict the radius and period of a planet based on the properties of its host star.
We adapt a model used for unsupervised part-of-speech tagging in computational linguistics to investigate whether planets or planetary systems fall into natural categories with physically interpretable "grammatical rules"
arXiv Detail & Related papers (2021-05-20T18:00:29Z) - Latent World Models For Intrinsically Motivated Exploration [140.21871701134626]
We present a self-supervised representation learning method for image-based observations.
We consider episodic and life-long uncertainties to guide the exploration of partially observable environments.
arXiv Detail & Related papers (2020-10-05T19:47:04Z) - Causal Discovery in Physical Systems from Videos [123.79211190669821]
Causal discovery is at the core of human cognition.
We consider the task of causal discovery from videos in an end-to-end fashion without supervision on the ground-truth graph structure.
arXiv Detail & Related papers (2020-07-01T17:29:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.