Bipartite mixed membership stochastic blockmodel
- URL: http://arxiv.org/abs/2101.02307v1
- Date: Thu, 7 Jan 2021 00:21:50 GMT
- Title: Bipartite mixed membership stochastic blockmodel
- Authors: Huan Qing and Jingli Wang
- Abstract summary: We propose an interpretable model: bipartite mixed membership blockmodel (BiMMSB) for directed mixed membership networks.
We also develop an efficient spectral algorithm called BiMPCA to estimate mixed memberships for both row nodes and column nodes in a directed network.
- Score: 1.370633147306388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mixed membership problem for undirected network has been well studied in
network analysis recent years. However, the more general case of mixed
membership for directed network remains a challenge. Here, we propose an
interpretable model: bipartite mixed membership stochastic blockmodel (BiMMSB
for short) for directed mixed membership networks. BiMMSB allows that row nodes
and column nodes of the adjacency matrix can be different and these nodes may
have distinct community structure in a directed network. We also develop an
efficient spectral algorithm called BiMPCA to estimate the mixed memberships
for both row nodes and column nodes in a directed network. We show that the
approach is asymptotically consistent under BiMMSB. We demonstrate the
advantages of BiMMSB with applications to a small-scale simulation study, the
directed Political blogs network and the Papers Citations network.
Related papers
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Nested stochastic block model for simultaneously clustering networks and
nodes [9.860884833526407]
We introduce the nested block model (NSBM) to cluster a collection of networks while simultaneously detecting communities within each network.
NSBM has several appealing features including the ability to work on unlabeled networks with potentially different node sets.
arXiv Detail & Related papers (2023-07-18T12:46:34Z) - Bipartite mixed membership distribution-free model. A novel model for community detection in overlapping bipartite weighted networks [0.4972323953932129]
We introduce a novel model, the Bipartite Mixed Membership Distribution-Free (BiMMDF) model.
Our model allows an adjacency matrix to follow any distribution as long as its expectation has a block structure related to node membership.
An efficient algorithm with a theoretical guarantee of consistent estimation is applied to fit BiMMDF.
arXiv Detail & Related papers (2022-11-02T06:26:47Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
In Bayesian structure learning, we are interested in inferring a distribution over the directed acyclic graph (DAG) from data.
Recently, a class of probabilistic models, called Generative Flow Networks (GFlowNets), have been introduced as a general framework for generative modeling.
We show that our approach, called DAG-GFlowNet, provides an accurate approximation of the posterior over DAGs.
arXiv Detail & Related papers (2022-02-28T15:53:10Z) - Robustness Certificates for Implicit Neural Networks: A Mixed Monotone
Contractive Approach [60.67748036747221]
Implicit neural networks offer competitive performance and reduced memory consumption.
They can remain brittle with respect to input adversarial perturbations.
This paper proposes a theoretical and computational framework for robustness verification of implicit neural networks.
arXiv Detail & Related papers (2021-12-10T03:08:55Z) - Community detection for weighted bipartite networks [1.0965065178451106]
citerohe2016co proposed co-Blockmodel (ScBM) as a tool for detecting community structure of binary bipartite graph data in network studies.
Here, to model a weighted bipartite network, we introduce a Bipartite Distribution-Free model by releasing ScBM's distribution restriction.
Our models do not require a specific distribution on generating elements of the adjacency matrix but only a block structure on the expected adjacency matrix.
arXiv Detail & Related papers (2021-09-21T17:01:36Z) - Directed degree corrected mixed membership model and estimating
community memberships in directed networks [0.0]
We build an efficient algorithm called DiMSC to infer the community membership vectors for both row nodes and column nodes.
We show that the proposed algorithm is consistent under mild conditions.
arXiv Detail & Related papers (2021-09-16T09:35:16Z) - A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network
Representation Learning [52.83948119677194]
We propose a multi-semantic metapath (MSM) model for large scale heterogeneous representation learning.
Specifically, we generate multi-semantic metapath-based random walks to construct the heterogeneous neighborhood to handle the unbalanced distributions.
We conduct systematical evaluations for the proposed framework on two challenging datasets: Amazon and Alibaba.
arXiv Detail & Related papers (2020-07-19T22:50:20Z) - Unsupervised Differentiable Multi-aspect Network Embedding [52.981277420394846]
We propose a novel end-to-end framework for multi-aspect network embedding, called asp2vec.
Our proposed framework can be readily extended to heterogeneous networks.
arXiv Detail & Related papers (2020-06-07T19:26:20Z) - Community Detection in Bipartite Networks with Stochastic Blockmodels [0.0]
In bipartite networks, community structures are restricted to being disassortative, in that nodes of one type are grouped according to common patterns of connection with nodes of the other type.
This makes the block model (SBM) an intuitive choice for bipartite community detection.
We introduce a nonparametric formulation of the SBM and a corresponding algorithm to efficiently find communities in bipartite networks.
arXiv Detail & Related papers (2020-01-22T05:58:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.