On the Turnpike to Design of Deep Neural Nets: Explicit Depth Bounds
- URL: http://arxiv.org/abs/2101.03000v1
- Date: Fri, 8 Jan 2021 13:23:37 GMT
- Title: On the Turnpike to Design of Deep Neural Nets: Explicit Depth Bounds
- Authors: Timm Faulwasser and Arne-Jens Hempel and Stefan Streif
- Abstract summary: This paper attempts a quantifiable answer to the question of how many layers should be considered in a Deep Neural Networks (DNN)
The underlying assumption is that the number of neurons per layer -- i.e., the width of the DNN -- is kept constant.
We prove explicit bounds on the required depths of DNNs based on reachability of assumptions and a dissipativity-inducing choice of the regularization terms in the training problem.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: It is well-known that the training of Deep Neural Networks (DNN) can be
formalized in the language of optimal control. In this context, this paper
leverages classical turnpike properties of optimal control problems to attempt
a quantifiable answer to the question of how many layers should be considered
in a DNN. The underlying assumption is that the number of neurons per layer --
i.e., the width of the DNN -- is kept constant. Pursuing a different route than
the classical analysis of approximation properties of sigmoidal functions, we
prove explicit bounds on the required depths of DNNs based on asymptotic
reachability assumptions and a dissipativity-inducing choice of the
regularization terms in the training problem. Numerical results obtained for
the two spiral task data set for classification indicate that the proposed
estimates can provide non-conservative depth bounds.
Related papers
- Information-Theoretic Generalization Bounds for Deep Neural Networks [22.87479366196215]
Deep neural networks (DNNs) exhibit an exceptional capacity for generalization in practical applications.
This work aims to capture the effect and benefits of depth for supervised learning via information-theoretic generalization bounds.
arXiv Detail & Related papers (2024-04-04T03:20:35Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
We show that when the data distribution is well-separated, DNNs can achieve Bayes-optimal test error for classification.
Our results indicate that interpolating with smoother functions leads to better generalization.
arXiv Detail & Related papers (2023-05-30T19:37:44Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
We provide theoretical evidence for learning low-dimensional state spaces, which can also model long-term memory.
Experiments corroborate our theory, demonstrating extrapolation via learning low-dimensional state spaces with both linear and non-linear RNNs.
arXiv Detail & Related papers (2022-10-25T14:45:15Z) - Variational Inference for Infinitely Deep Neural Networks [0.4061135251278187]
unbounded depth neural network (UDN)
We introduce the unbounded depth neural network (UDN), an infinitely deep probabilistic model that adapts its complexity to the training data.
We study the UDN on real and synthetic data.
arXiv Detail & Related papers (2022-09-21T03:54:34Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
The study on NTK has been devoted to typical neural network architectures, but is incomplete for neural networks with Hadamard products (NNs-Hp)
In this work, we derive the finite-width-K formulation for a special class of NNs-Hp, i.e., neural networks.
We prove their equivalence to the kernel regression predictor with the associated NTK, which expands the application scope of NTK.
arXiv Detail & Related papers (2022-09-16T06:36:06Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Chance-Constrained Control with Lexicographic Deep Reinforcement
Learning [77.34726150561087]
This paper proposes a lexicographic Deep Reinforcement Learning (DeepRL)-based approach to chance-constrained Markov Decision Processes.
A lexicographic version of the well-known DeepRL algorithm DQN is also proposed and validated via simulations.
arXiv Detail & Related papers (2020-10-19T13:09:14Z) - Higher-order Quasi-Monte Carlo Training of Deep Neural Networks [0.0]
We present a novel algorithmic approach and an error analysis leveraging Quasi-Monte Carlo points for training deep neural network (DNN) surrogates of Data-to-Observable (DtO) maps in engineering design.
arXiv Detail & Related papers (2020-09-06T11:31:42Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.