Portfolio Optimization with 2D Relative-Attentional Gated Transformer
- URL: http://arxiv.org/abs/2101.03138v1
- Date: Sun, 27 Dec 2020 14:08:26 GMT
- Title: Portfolio Optimization with 2D Relative-Attentional Gated Transformer
- Authors: Tae Wan Kim, Matloob Khushi
- Abstract summary: We propose a novel Deterministic Policy Gradient with 2D Relative-attentional Gated Transformer (DPGRGT) model.
Applying learnable relative positional embeddings for the time and assets axes, the model better understands the peculiar structure of the financial data.
In our experiment using U.S. stock market data of 20 years, our model outperformed baseline models and demonstrated its effectiveness.
- Score: 9.541129630971689
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Portfolio optimization is one of the most attentive fields that have been
researched with machine learning approaches. Many researchers attempted to
solve this problem using deep reinforcement learning due to its efficient
inherence that can handle the property of financial markets. However, most of
them can hardly be applicable to real-world trading since they ignore or
extremely simplify the realistic constraints of transaction costs. These
constraints have a significantly negative impact on portfolio profitability. In
our research, a conservative level of transaction fees and slippage are
considered for the realistic experiment. To enhance the performance under those
constraints, we propose a novel Deterministic Policy Gradient with 2D
Relative-attentional Gated Transformer (DPGRGT) model. Applying learnable
relative positional embeddings for the time and assets axes, the model better
understands the peculiar structure of the financial data in the portfolio
optimization domain. Also, gating layers and layer reordering are employed for
stable convergence of Transformers in reinforcement learning. In our experiment
using U.S. stock market data of 20 years, our model outperformed baseline
models and demonstrated its effectiveness.
Related papers
- Towards Resilient and Efficient LLMs: A Comparative Study of Efficiency, Performance, and Adversarial Robustness [0.0]
We investigate the trade-off between efficiency, performance, and adversarial robustness of Large Language Models (LLMs)
We conduct experiments on three prominent models with varying levels of complexity and efficiency -- Transformer++, Gated Linear Attention (GLA) Transformer, and MatMul-Free LM.
Our results show that while the GLA Transformer and MatMul-Free LM achieve slightly lower accuracy on GLUE tasks, they demonstrate higher efficiency and either superior or comparative robustness on AdvGLUE tasks.
arXiv Detail & Related papers (2024-08-08T16:54:40Z) - Hedge Fund Portfolio Construction Using PolyModel Theory and iTransformer [1.4061979259370274]
We implement the PolyModel theory for constructing a hedge fund portfolio.
We create quantitative measures such as Long-term Alpha, Long-term Ratio, and SVaR.
We also employ the latest deep learning techniques (iTransformer) to capture the upward trend.
arXiv Detail & Related papers (2024-08-06T17:55:58Z) - A Bargaining-based Approach for Feature Trading in Vertical Federated
Learning [54.51890573369637]
We propose a bargaining-based feature trading approach in Vertical Federated Learning (VFL) to encourage economically efficient transactions.
Our model incorporates performance gain-based pricing, taking into account the revenue-based optimization objectives of both parties.
arXiv Detail & Related papers (2024-02-23T10:21:07Z) - Optimizing Credit Limit Adjustments Under Adversarial Goals Using
Reinforcement Learning [42.303733194571905]
We seek to find and automatize an optimal credit card limit adjustment policy by employing reinforcement learning techniques.
Our research establishes a conceptual structure for applying reinforcement learning framework to credit limit adjustment.
arXiv Detail & Related papers (2023-06-27T16:10:36Z) - Efficient pre-training objectives for Transformers [84.64393460397471]
We study several efficient pre-training objectives for Transformers-based models.
We prove that eliminating the MASK token and considering the whole output during the loss are essential choices to improve performance.
arXiv Detail & Related papers (2021-04-20T00:09:37Z) - Deep Reinforcement Learning for Stock Portfolio Optimization [0.0]
We will formulate the problem such that we can apply Reinforcement Learning for the task properly.
To maintain a realistic assumption about the market, we will incorporate transaction cost and risk factor into the state as well.
We will present the end-to-end solution for the task with Minimum Variance Portfolio for stock subset selection, and Wavelet Transform for extracting multi-frequency data pattern.
arXiv Detail & Related papers (2020-12-09T10:19:12Z) - Robust Optimal Transport with Applications in Generative Modeling and
Domain Adaptation [120.69747175899421]
Optimal Transport (OT) distances such as Wasserstein have been used in several areas such as GANs and domain adaptation.
We propose a computationally-efficient dual form of the robust OT optimization that is amenable to modern deep learning applications.
Our approach can train state-of-the-art GAN models on noisy datasets corrupted with outlier distributions.
arXiv Detail & Related papers (2020-10-12T17:13:40Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z) - Understanding the Difficulty of Training Transformers [120.99980924577787]
We show that unbalanced gradients are not the root cause of the instability of training.
We propose Admin to stabilize the early stage's training and unleash its full potential in the late stage.
arXiv Detail & Related papers (2020-04-17T13:59:07Z) - Cost-Sensitive Portfolio Selection via Deep Reinforcement Learning [100.73223416589596]
We propose a cost-sensitive portfolio selection method with deep reinforcement learning.
Specifically, a novel two-stream portfolio policy network is devised to extract both price series patterns and asset correlations.
A new cost-sensitive reward function is developed to maximize the accumulated return and constrain both costs via reinforcement learning.
arXiv Detail & Related papers (2020-03-06T06:28:17Z) - TPLVM: Portfolio Construction by Student's $t$-process Latent Variable
Model [3.5408022972081694]
We propose the Student's $t$-process latent variable model (TPLVM) to describe non-Gaussian fluctuations of financial timeseries by lower dimensional latent variables.
By comparing these portfolios, we confirm the proposed portfolio outperforms that of the existing Gaussian process latent variable model.
arXiv Detail & Related papers (2020-01-29T02:02:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.