Target Detection and Segmentation in Circular-Scan
Synthetic-Aperture-Sonar Images using Semi-Supervised Convolutional
Encoder-Decoders
- URL: http://arxiv.org/abs/2101.03603v2
- Date: Fri, 19 Mar 2021 16:36:41 GMT
- Title: Target Detection and Segmentation in Circular-Scan
Synthetic-Aperture-Sonar Images using Semi-Supervised Convolutional
Encoder-Decoders
- Authors: Isaac J. Sledge, Matthew S. Emigh, Jonathan L. King, Denton L. Woods,
J. Tory Cobb, Jose C. Principe
- Abstract summary: We propose a saliency-based, multi-target detection and segmentation framework for multi-aspect, semi-coherent imagery.
Our framework relies on a multi-branch, convolutional encoder-decoder network (MB-CEDN)
We show that our framework outperforms supervised deep networks.
- Score: 9.713290203986478
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a saliency-based, multi-target detection and segmentation
framework for multi-aspect, semi-coherent imagery formed from circular-scan,
synthetic-aperture sonar (CSAS). Our framework relies on a multi-branch,
convolutional encoder-decoder network (MB-CEDN). The encoder portion extracts
features from one or more CSAS images of the targets. These features are then
split off and fed into multiple decoders that perform pixel-level
classification on the extracted features to roughly mask the target in an
unsupervised-trained manner and detect foreground and background pixels in a
supervised-trained manner. Each of these target-detection estimates provide
different perspectives as to what constitute a target. These opinions are
cascaded into a deep-parsing network to model contextual and spatial
constraints that help isolate targets better than either solution estimate
alone.
We evaluate our framework using real-world CSAS data with five broad target
classes. Since we are the first to consider both CSAS target detection and
segmentation, we adapt existing image and video-processing network topologies
from the literature for comparative purposes. We show that our framework
outperforms supervised deep networks. It greatly outperforms state-of-the-art
unsupervised approaches for diverse target and seafloor types.
Related papers
- PGNeXt: High-Resolution Salient Object Detection via Pyramid Grafting Network [24.54269823691119]
We present an advanced study on more challenging high-resolution salient object detection (HRSOD) from both dataset and network framework perspectives.
To compensate for the lack of HRSOD dataset, we thoughtfully collect a large-scale high resolution salient object detection dataset, called UHRSD.
All the images are finely annotated in pixel-level, far exceeding previous low-resolution SOD datasets.
arXiv Detail & Related papers (2024-08-02T09:31:21Z) - A Unified Transformer Framework for Group-based Segmentation:
Co-Segmentation, Co-Saliency Detection and Video Salient Object Detection [59.21990697929617]
Humans tend to mine objects by learning from a group of images or several frames of video since we live in a dynamic world.
Previous approaches design different networks on similar tasks separately, and they are difficult to apply to each other.
We introduce a unified framework to tackle these issues, term as UFO (UnifiedObject Framework for Co-Object Framework)
arXiv Detail & Related papers (2022-03-09T13:35:19Z) - AF$_2$: Adaptive Focus Framework for Aerial Imagery Segmentation [86.44683367028914]
Aerial imagery segmentation has some unique challenges, the most critical one among which lies in foreground-background imbalance.
We propose Adaptive Focus Framework (AF$), which adopts a hierarchical segmentation procedure and focuses on adaptively utilizing multi-scale representations.
AF$ has significantly improved the accuracy on three widely used aerial benchmarks, as fast as the mainstream method.
arXiv Detail & Related papers (2022-02-18T10:14:45Z) - A Novel Upsampling and Context Convolution for Image Semantic
Segmentation [0.966840768820136]
Recent methods for semantic segmentation often employ an encoder-decoder structure using deep convolutional neural networks.
We propose a dense upsampling convolution method based on guided filtering to effectively preserve the spatial information of the image in the network.
We report a new record of 82.86% and 81.62% of pixel accuracy on ADE20K and Pascal-Context benchmark datasets, respectively.
arXiv Detail & Related papers (2021-03-20T06:16:42Z) - FPS-Net: A Convolutional Fusion Network for Large-Scale LiDAR Point
Cloud Segmentation [30.736361776703568]
Scene understanding based on LiDAR point cloud is an essential task for autonomous cars to drive safely.
Most existing methods simply stack different point attributes/modalities as image channels to increase information capacity.
We design FPS-Net, a convolutional fusion network that exploits the uniqueness and discrepancy among the projected image channels for optimal point cloud segmentation.
arXiv Detail & Related papers (2021-03-01T04:08:28Z) - Boundary-Aware Segmentation Network for Mobile and Web Applications [60.815545591314915]
Boundary-Aware Network (BASNet) is integrated with a predict-refine architecture and a hybrid loss for highly accurate image segmentation.
BASNet runs at over 70 fps on a single GPU which benefits many potential real applications.
Based on BASNet, we further developed two (close to) commercial applications: AR COPY & PASTE, in which BASNet is augmented reality for "COPY" and "PASTING" real-world objects, and OBJECT CUT, which is a web-based tool for automatic object background removal.
arXiv Detail & Related papers (2021-01-12T19:20:26Z) - Beyond Single Stage Encoder-Decoder Networks: Deep Decoders for Semantic
Image Segmentation [56.44853893149365]
Single encoder-decoder methodologies for semantic segmentation are reaching their peak in terms of segmentation quality and efficiency per number of layers.
We propose a new architecture based on a decoder which uses a set of shallow networks for capturing more information content.
In order to further improve the architecture we introduce a weight function which aims to re-balance classes to increase the attention of the networks to under-represented objects.
arXiv Detail & Related papers (2020-07-19T18:44:34Z) - Gradient-Induced Co-Saliency Detection [81.54194063218216]
Co-saliency detection (Co-SOD) aims to segment the common salient foreground in a group of relevant images.
In this paper, inspired by human behavior, we propose a gradient-induced co-saliency detection method.
arXiv Detail & Related papers (2020-04-28T08:40:55Z) - CRNet: Cross-Reference Networks for Few-Shot Segmentation [59.85183776573642]
Few-shot segmentation aims to learn a segmentation model that can be generalized to novel classes with only a few training images.
With a cross-reference mechanism, our network can better find the co-occurrent objects in the two images.
Experiments on the PASCAL VOC 2012 dataset show that our network achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-03-24T04:55:43Z) - Contextual Encoder-Decoder Network for Visual Saliency Prediction [42.047816176307066]
We propose an approach based on a convolutional neural network pre-trained on a large-scale image classification task.
We combine the resulting representations with global scene information for accurately predicting visual saliency.
Compared to state of the art approaches, the network is based on a lightweight image classification backbone.
arXiv Detail & Related papers (2019-02-18T16:15:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.