Small Input Noise is Enough to Defend Against Query-based Black-box
Attacks
- URL: http://arxiv.org/abs/2101.04829v1
- Date: Wed, 13 Jan 2021 01:45:59 GMT
- Title: Small Input Noise is Enough to Defend Against Query-based Black-box
Attacks
- Authors: Junyoung Byun, Hyojun Go, Changick Kim
- Abstract summary: In this paper, we show how Small Noise Defense can defend against query-based black-box attacks.
Even a small additive input noise can neutralize most query-based attacks.
Even with strong defense ability, SND almost maintains the original clean accuracy and computational speed.
- Score: 23.712389625037442
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While deep neural networks show unprecedented performance in various tasks,
the vulnerability to adversarial examples hinders their deployment in
safety-critical systems. Many studies have shown that attacks are also possible
even in a black-box setting where an adversary cannot access the target model's
internal information. Most black-box attacks are based on queries, each of
which obtains the target model's output for an input, and many recent studies
focus on reducing the number of required queries. In this paper, we pay
attention to an implicit assumption of these attacks that the target model's
output exactly corresponds to the query input. If some randomness is introduced
into the model to break this assumption, query-based attacks may have
tremendous difficulty in both gradient estimation and local search, which are
the core of their attack process. From this motivation, we observe even a small
additive input noise can neutralize most query-based attacks and name this
simple yet effective approach Small Noise Defense (SND). We analyze how SND can
defend against query-based black-box attacks and demonstrate its effectiveness
against eight different state-of-the-art attacks with CIFAR-10 and ImageNet
datasets. Even with strong defense ability, SND almost maintains the original
clean accuracy and computational speed. SND is readily applicable to
pre-trained models by adding only one line of code at the inference stage, so
we hope that it will be used as a baseline of defense against query-based
black-box attacks in the future.
Related papers
- AdvQDet: Detecting Query-Based Adversarial Attacks with Adversarial Contrastive Prompt Tuning [93.77763753231338]
Adversarial Contrastive Prompt Tuning (ACPT) is proposed to fine-tune the CLIP image encoder to extract similar embeddings for any two intermediate adversarial queries.
We show that ACPT can detect 7 state-of-the-art query-based attacks with $>99%$ detection rate within 5 shots.
We also show that ACPT is robust to 3 types of adaptive attacks.
arXiv Detail & Related papers (2024-08-04T09:53:50Z) - BruSLeAttack: A Query-Efficient Score-Based Black-Box Sparse Adversarial Attack [22.408968332454062]
We study the unique, less-well understood problem of generating sparse adversarial samples simply by observing the score-based replies to model queries.
We develop the BruSLeAttack-a new, faster (more query-efficient) algorithm for the problem.
Our work facilitates faster evaluation of model vulnerabilities and raises our vigilance on the safety, security and reliability of deployed systems.
arXiv Detail & Related papers (2024-04-08T08:59:26Z) - Understanding the Robustness of Randomized Feature Defense Against
Query-Based Adversarial Attacks [23.010308600769545]
Deep neural networks are vulnerable to adversarial examples that find samples close to the original image but can make the model misclassify.
We propose a simple and lightweight defense against black-box attacks by adding random noise to hidden features at intermediate layers of the model at inference time.
Our method effectively enhances the model's resilience against both score-based and decision-based black-box attacks.
arXiv Detail & Related papers (2023-10-01T03:53:23Z) - Certifiable Black-Box Attacks with Randomized Adversarial Examples: Breaking Defenses with Provable Confidence [34.35162562625252]
Black-box adversarial attacks have demonstrated strong potential to compromise machine learning models.
We study a new paradigm of black-box attacks with provable guarantees.
This new black-box attack unveils significant vulnerabilities of machine learning models.
arXiv Detail & Related papers (2023-04-10T01:12:09Z) - Towards Lightweight Black-Box Attacks against Deep Neural Networks [70.9865892636123]
We argue that black-box attacks can pose practical attacks where only several test samples are available.
As only a few samples are required, we refer to these attacks as lightweight black-box attacks.
We propose Error TransFormer (ETF) for lightweight attacks to mitigate the approximation error.
arXiv Detail & Related papers (2022-09-29T14:43:03Z) - Theoretical Study of Random Noise Defense against Query-Based Black-Box
Attacks [72.8152874114382]
In this work, we study a simple but promising defense technique, dubbed Random Noise Defense (RND) against query-based black-box attacks.
It is lightweight and can be directly combined with any off-the-shelf models and other defense strategies.
In this work, we present solid theoretical analyses to demonstrate that the defense effect of RND against the query-based black-box attack and the corresponding adaptive attack heavily depends on the magnitude ratio.
arXiv Detail & Related papers (2021-04-23T08:39:41Z) - Improving Query Efficiency of Black-box Adversarial Attack [75.71530208862319]
We propose a Neural Process based black-box adversarial attack (NP-Attack)
NP-Attack could greatly decrease the query counts under the black-box setting.
arXiv Detail & Related papers (2020-09-24T06:22:56Z) - RayS: A Ray Searching Method for Hard-label Adversarial Attack [99.72117609513589]
We present the Ray Searching attack (RayS), which greatly improves the hard-label attack effectiveness as well as efficiency.
RayS attack can also be used as a sanity check for possible "falsely robust" models.
arXiv Detail & Related papers (2020-06-23T07:01:50Z) - Defense for Black-box Attacks on Anti-spoofing Models by Self-Supervised
Learning [71.17774313301753]
We explore the robustness of self-supervised learned high-level representations by using them in the defense against adversarial attacks.
Experimental results on the ASVspoof 2019 dataset demonstrate that high-level representations extracted by Mockingjay can prevent the transferability of adversarial examples.
arXiv Detail & Related papers (2020-06-05T03:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.