Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records
- URL: http://arxiv.org/abs/2101.04853v1
- Date: Wed, 13 Jan 2021 03:20:20 GMT
- Title: Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records
- Authors: Yiqin Yu, Pin-Yu Chen, Yuan Zhou, Jing Mei
- Abstract summary: We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
- Score: 57.75125067744978
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: With the successful adoption of machine learning on electronic health records
(EHRs), numerous computational models have been deployed to address a variety
of clinical problems. However, due to the heterogeneity of EHRs, models trained
on different patient groups suffer from poor generalizability. How to mitigate
domain shifts between the source patient group where the model is built upon
and the target one where the model will be deployed becomes a critical issue.
In this paper, we propose a data augmentation method to facilitate domain
adaptation, which leverages knowledge from the source patient group when
training model on the target one. Specifically, adversarially generated samples
are used during domain adaptation to fill the generalization gap between the
two patient groups. The proposed method is evaluated by a case study on
different predictive modeling tasks on MIMIC-III EHR dataset. Results confirm
the effectiveness of our method and the generality on different tasks.
Related papers
- Lessons Learned on Information Retrieval in Electronic Health Records: A Comparison of Embedding Models and Pooling Strategies [8.822087602255504]
Applying large language models to the clinical domain is challenging due to the context-heavy nature of processing medical records.
This paper explores how different embedding models and pooling methods affect information retrieval for the clinical domain.
arXiv Detail & Related papers (2024-09-23T16:16:08Z) - Addressing Data Heterogeneity in Federated Learning of Cox Proportional Hazards Models [8.798959872821962]
This paper outlines an approach in the domain of federated survival analysis, specifically the Cox Proportional Hazards (CoxPH) model.
We present an FL approach that employs feature-based clustering to enhance model accuracy across synthetic datasets and real-world applications.
arXiv Detail & Related papers (2024-07-20T18:34:20Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - DGM-DR: Domain Generalization with Mutual Information Regularized
Diabetic Retinopathy Classification [40.35834579068518]
Domain shift between training and testing data presents a significant challenge for training general deep learning models.
We introduce a DG method that re-establishes the model objective function as a pretrained model to the medical imaging field.
Our proposed method consistently outperforms the previous state-of-the-art by a margin of 5.25% in average accuracy and a lower standard deviation.
arXiv Detail & Related papers (2023-09-18T11:17:13Z) - Exploration of the Rashomon Set Assists Trustworthy Explanations for
Medical Data [4.499833362998488]
This paper introduces a novel process to explore models in the Rashomon set, extending the conventional modeling approach.
We propose the $textttRashomon_DETECT$ algorithm to detect models with different behavior.
To quantify differences in variable effects among models, we introduce the Profile Disparity Index (PDI) based on measures from functional data analysis.
arXiv Detail & Related papers (2023-08-22T13:53:43Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Harmonization with Flow-based Causal Inference [12.739380441313022]
This paper presents a normalizing-flow-based method to perform counterfactual inference upon a structural causal model (SCM) to harmonize medical data.
We evaluate on multiple, large, real-world medical datasets to observe that this method leads to better cross-domain generalization compared to state-of-the-art algorithms.
arXiv Detail & Related papers (2021-06-12T19:57:35Z) - On the Efficacy of Adversarial Data Collection for Question Answering:
Results from a Large-Scale Randomized Study [65.17429512679695]
In adversarial data collection (ADC), a human workforce interacts with a model in real time, attempting to produce examples that elicit incorrect predictions.
Despite ADC's intuitive appeal, it remains unclear when training on adversarial datasets produces more robust models.
arXiv Detail & Related papers (2021-06-02T00:48:33Z) - Selecting Treatment Effects Models for Domain Adaptation Using Causal
Knowledge [82.5462771088607]
We propose a novel model selection metric specifically designed for ITE methods under the unsupervised domain adaptation setting.
In particular, we propose selecting models whose predictions of interventions' effects satisfy known causal structures in the target domain.
arXiv Detail & Related papers (2021-02-11T21:03:14Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.