Telecom-heralded entanglement between remote multimode solid-state
quantum memories
- URL: http://arxiv.org/abs/2101.05097v1
- Date: Wed, 13 Jan 2021 14:31:54 GMT
- Title: Telecom-heralded entanglement between remote multimode solid-state
quantum memories
- Authors: Dario Lago-Rivera, Samuele Grandi, Jelena V. Rakonjac, Alessandro
Seri, Hugues de Riedmatten
- Abstract summary: Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
- Score: 55.41644538483948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Future quantum networks will enable the distribution of entanglement between
distant locations and allow applications in quantum communication, quantum
sensing and distributed quantum computation. At the core of this network lies
the ability of generating and storing entanglement at remote, interconnected
quantum nodes. While remote physical systems of various nature have been
successfully entangled, none of these realisations encompassed all of the
requirements for network operation, such as telecom-compatibility and multimode
operation. Here we report the demonstration of heralded entanglement between
two spatially separated quantum nodes, where the entanglement is stored in
multimode solid-state quantum memories. At each node a praseodymium-doped
crystal stores a photon of a correlated pair, with the second photon at
telecommunication wavelengths. Entanglement between quantum memories placed in
different labs is heralded by the detection of a telecom photon at a rate up to
1.4 kHz and is stored in the crystals for a pre-determined storage time up to
25 microseconds. We also show that the generated entanglement is robust against
loss in the heralding path, and demonstrate temporally multiplexed operation,
with 62 temporal modes. Our realisation is extendable to entanglement over
longer distances and provides a viable route towards field-deployed,
multiplexed quantum repeaters based on solid-state resources.
Related papers
- Deterministic generation of a 20-qubit two-dimensional photonic cluster state [87.34681687753141]
We present a device capable of emitting large-scale entangled microwave photonic states in a two dimensional ladder structure.
By interleaving two-qubit gates with controlled photon emission, we generate 2 x n grids of time- and frequency-multiplexed cluster states of itinerant microwave photons.
We measure a signature of localizable entanglement across up to 20 photonic qubits.
arXiv Detail & Related papers (2024-09-10T16:25:24Z) - Scalable Multipartite Entanglement of Remote Rare-earth Ion Qubits [3.9514210525254785]
Single photon emitters with internal spin are leading contenders for developing quantum repeater networks.
We introduce a scalable approach to quantum networking that utilizes frequency erasing photon detection and real-time quantum control.
Our results provide a practical route to overcoming universal limitations imposed by non-uniformity and instability in solid-state emitters.
arXiv Detail & Related papers (2024-02-25T23:55:29Z) - Hybrid Quantum Repeaters with Ensemble-based Quantum Memories and Single-spin Photon Transducers [13.607316611508045]
We propose to combine two promising hardware platforms in a hybrid quantum repeater architecture.
We describe how a single Rubidium (Rb) atom coupled to nanophotonic resonators can function as a high-rate, telecom-visible entangled photon source.
Our analysis shows that by employing up to 9 repeater stations, each equipped with two Tm-memories capable of holding up to 625 storage modes, along with four single Rb atoms, one can reach a quantum communication rate of about 10 secret bits per second across distances of up to 1000 km.
arXiv Detail & Related papers (2024-01-22T22:56:50Z) - Entanglement of Nanophotonic Quantum Memory Nodes in a Telecom Network [0.0]
We demonstrate entanglement of two nuclear spin memories through 40 km spools of low-loss fiber and a 35 km long fiber loop deployed in the Boston area urban environment.
By integrating efficient bi-directional quantum frequency conversion of photonic communication qubits to telecom frequencies (1350 nm), we demonstrate entanglement of two nuclear spin memories.
arXiv Detail & Related papers (2023-10-02T16:23:08Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Frequency-multiplexed storage and distribution of narrowband telecom
photon pairs over a 10-km fiber link with long-term system stability [0.0]
The ability to transmit quantum states over long distances is a fundamental requirement of the quantum internet.
We demonstrate the storing of a frequency-multiplexed two-photon source at telecommunication wavelengths in a quantum memory accepting visible wavelengths.
arXiv Detail & Related papers (2023-03-03T02:32:43Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Multiplexed telecom-band quantum networking with atom arrays in optical
cavities [0.3499870393443268]
We propose a platform for quantum processors comprising neutral atom arrays with telecom-band photons in a multiplexed network architecture.
The use of a large atom array instead of a single atom mitigates the deleterious effects of two-way communication and improves the entanglement rate between two nodes by nearly two orders of magnitude.
arXiv Detail & Related papers (2021-07-09T15:05:57Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.