Towards Accurate Camouflaged Object Detection with Mixture Convolution and Interactive Fusion
- URL: http://arxiv.org/abs/2101.05687v3
- Date: Fri, 19 Jul 2024 10:57:35 GMT
- Title: Towards Accurate Camouflaged Object Detection with Mixture Convolution and Interactive Fusion
- Authors: Geng Chen, Xinrui Chen, Bo Dong, Mingchen Zhuge, Yongxiong Wang, Hongbo Bi, Jian Chen, Peng Wang, Yanning Zhang,
- Abstract summary: We propose a novel deep learning based COD approach, which integrates the large receptive field and effective feature fusion into a unified framework.
Our method detects camouflaged objects with an effective fusion strategy, which aggregates the rich context information from a large receptive field.
- Score: 45.45231015502287
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Camouflaged object detection (COD), which aims to identify the objects that conceal themselves into the surroundings, has recently drawn increasing research efforts in the field of computer vision. In practice, the success of deep learning based COD is mainly determined by two key factors, including (i) A significantly large receptive field, which provides rich context information, and (ii) An effective fusion strategy, which aggregates the rich multi-level features for accurate COD. Motivated by these observations, in this paper, we propose a novel deep learning based COD approach, which integrates the large receptive field and effective feature fusion into a unified framework. Specifically, we first extract multi-level features from a backbone network. The resulting features are then fed to the proposed dual-branch mixture convolution modules, each of which utilizes multiple asymmetric convolutional layers and two dilated convolutional layers to extract rich context features from a large receptive field. Finally, we fuse the features using specially-designed multilevel interactive fusion modules, each of which employs an attention mechanism along with feature interaction for effective feature fusion. Our method detects camouflaged objects with an effective fusion strategy, which aggregates the rich context information from a large receptive field. All of these designs meet the requirements of COD well, allowing the accurate detection of camouflaged objects. Extensive experiments on widely-used benchmark datasets demonstrate that our method is capable of accurately detecting camouflaged objects and outperforms the state-of-the-art methods.
Related papers
- GLCONet: Learning Multi-source Perception Representation for Camouflaged Object Detection [23.872633359324098]
We propose a novel Global-Local Collaborative Optimization Network, called GLCONet.
In this paper, we first design a collaborative optimization strategy to simultaneously model the local details and global long-range relationships.
Experiments demonstrate that the proposed GLCONet method with different backbones can effectively activate potentially significant pixels in an image.
arXiv Detail & Related papers (2024-09-15T02:26:17Z) - Fusion-Mamba for Cross-modality Object Detection [63.56296480951342]
Cross-modality fusing information from different modalities effectively improves object detection performance.
We design a Fusion-Mamba block (FMB) to map cross-modal features into a hidden state space for interaction.
Our proposed approach outperforms the state-of-the-art methods on $m$AP with 5.9% on $M3FD$ and 4.9% on FLIR-Aligned datasets.
arXiv Detail & Related papers (2024-04-14T05:28:46Z) - CoFiNet: Unveiling Camouflaged Objects with Multi-Scale Finesse [46.79770062391987]
We introduce a novel method for camouflage object detection, named CoFiNet.
Our approach focuses on multi-scale feature fusion and extraction, with special attention to the model's segmentation effectiveness.
CoFiNet achieves state-of-the-art performance across all datasets.
arXiv Detail & Related papers (2024-02-03T17:24:55Z) - From Text to Pixels: A Context-Aware Semantic Synergy Solution for
Infrared and Visible Image Fusion [66.33467192279514]
We introduce a text-guided multi-modality image fusion method that leverages the high-level semantics from textual descriptions to integrate semantics from infrared and visible images.
Our method not only produces visually superior fusion results but also achieves a higher detection mAP over existing methods, achieving state-of-the-art results.
arXiv Detail & Related papers (2023-12-31T08:13:47Z) - Feature Aggregation and Propagation Network for Camouflaged Object
Detection [42.33180748293329]
Camouflaged object detection (COD) aims to detect/segment camouflaged objects embedded in the environment.
Several COD methods have been developed, but they still suffer from unsatisfactory performance due to intrinsic similarities between foreground objects and background surroundings.
We propose a novel Feature Aggregation and propagation Network (FAP-Net) for camouflaged object detection.
arXiv Detail & Related papers (2022-12-02T05:54:28Z) - Camouflaged Object Detection via Context-aware Cross-level Fusion [10.942917945534678]
Camouflaged object detection (COD) aims to identify the objects that conceal themselves in natural scenes.
We propose a novel Context-aware Cross-level Fusion Network (C2F-Net), which fuses context-aware cross-level features.
C2F-Net is an effective COD model and outperforms state-of-the-art (SOTA) models remarkably.
arXiv Detail & Related papers (2022-07-27T08:34:16Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
This study addresses the issue of fusing infrared and visible images that appear differently for object detection.
Previous approaches discover commons underlying the two modalities and fuse upon the common space either by iterative optimization or deep networks.
This paper proposes a bilevel optimization formulation for the joint problem of fusion and detection, and then unrolls to a target-aware Dual Adversarial Learning (TarDAL) network for fusion and a commonly used detection network.
arXiv Detail & Related papers (2022-03-30T11:44:56Z) - MBDF-Net: Multi-Branch Deep Fusion Network for 3D Object Detection [17.295359521427073]
We propose a Multi-Branch Deep Fusion Network (MBDF-Net) for 3D object detection.
In the first stage, our multi-branch feature extraction network utilizes Adaptive Attention Fusion modules to produce cross-modal fusion features from single-modal semantic features.
In the second stage, we use a region of interest (RoI) -pooled fusion module to generate enhanced local features for refinement.
arXiv Detail & Related papers (2021-08-29T15:40:15Z) - Cross-layer Feature Pyramid Network for Salient Object Detection [102.20031050972429]
We propose a novel Cross-layer Feature Pyramid Network to improve the progressive fusion in salient object detection.
The distributed features per layer own both semantics and salient details from all other layers simultaneously, and suffer reduced loss of important information.
arXiv Detail & Related papers (2020-02-25T14:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.