Unsupervised machine learning of topological phase transitions from
experimental data
- URL: http://arxiv.org/abs/2101.05712v2
- Date: Mon, 1 Feb 2021 20:19:20 GMT
- Title: Unsupervised machine learning of topological phase transitions from
experimental data
- Authors: Niklas K\"aming, Anna Dawid, Korbinian Kottmann, Maciej Lewenstein,
Klaus Sengstock, Alexandre Dauphin, Christof Weitenberg
- Abstract summary: We apply unsupervised machine learning techniques to experimental data from ultracold atoms.
We obtain the topological phase diagram of the Haldane model in a completely unbiased fashion.
Our work provides a benchmark for unsupervised detection of new exotic phases in complex many-body systems.
- Score: 52.77024349608834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying phase transitions is one of the key challenges in quantum
many-body physics. Recently, machine learning methods have been shown to be an
alternative way of localising phase boundaries also from noisy and imperfect
data and without the knowledge of the order parameter. Here we apply different
unsupervised machine learning techniques including anomaly detection and
influence functions to experimental data from ultracold atoms. In this way we
obtain the topological phase diagram of the Haldane model in a completely
unbiased fashion. We show that the methods can successfully be applied to
experimental data at finite temperature and to data of Floquet systems, when
postprocessing the data to a single micromotion phase. Our work provides a
benchmark for unsupervised detection of new exotic phases in complex many-body
systems.
Related papers
- Learning and Controlling Silicon Dopant Transitions in Graphene using
Scanning Transmission Electron Microscopy [58.51812955462815]
We introduce a machine learning approach to determine the transition dynamics of silicon atoms on a single layer of carbon atoms.
The data samples are processed and filtered to produce symbolic representations, which we use to train a neural network to predict transition probabilities.
These learned transition dynamics are then leveraged to guide a single silicon atom throughout the lattice to pre-determined target destinations.
arXiv Detail & Related papers (2023-11-21T21:51:00Z) - Binary Quantification and Dataset Shift: An Experimental Investigation [54.14283123210872]
Quantification is the supervised learning task that consists of training predictors of the class prevalence values of sets of unlabelled data.
The relationship between quantification and other types of dataset shift remains, by and large, unexplored.
We propose a fine-grained taxonomy of types of dataset shift, by establishing protocols for the generation of datasets affected by these types of shift.
arXiv Detail & Related papers (2023-10-06T20:11:27Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Unsupervised Interpretable Learning of Phases From Many-Qubit Systems [2.4352963290061993]
We show how an unsupervised machine-learning technique can be used to understand short-range entangled many-qubit systems.
Our work opens the door for a first-principles application of hybrid algorithms that aim at strong interpretability without supervision.
arXiv Detail & Related papers (2022-08-18T14:35:28Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Unsupervised and supervised learning of interacting topological phases
from single-particle correlation functions [0.0]
We show that unsupervised and supervised machine learning techniques are able to predict phases of a non-exactly solvable model when trained on data of a solvable model.
In particular, we employ a training set made by single-particle correlation functions of a non-interacting quantum wire.
We show that both the principal component analysis and the convolutional neural networks trained on the data of the non-interacting model can identify the topological phases of the interacting model with a high degree of accuracy.
arXiv Detail & Related papers (2022-02-18T16:02:29Z) - Detection of Berezinskii-Kosterlitz-Thouless transition via Generative
Adversarial Networks [0.0]
We train a Geneversarative Adrial Network (GAN) with the Entanglement Spectrum of a system bipartition.
We are able to identify gapless-to-gapped phase transitions in different one-dimensional models.
arXiv Detail & Related papers (2021-10-11T16:19:17Z) - Unsupervised phase discovery with deep anomaly detection [0.0]
We demonstrate how to explore phase diagrams with automated and unsupervised machine learning.
We employ deep neural networks to determine the entire phase diagram in a completely unsupervised and automated fashion.
Our method allows us to reveal a phase-separated region between supersolid and superfluid parts with unexpected properties.
arXiv Detail & Related papers (2020-03-22T14:20:04Z) - Unsupervised machine learning of quantum phase transitions using
diffusion maps [77.34726150561087]
We show that the diffusion map method, which performs nonlinear dimensionality reduction and spectral clustering of the measurement data, has significant potential for learning complex phase transitions unsupervised.
This method works for measurements of local observables in a single basis and is thus readily applicable to many experimental quantum simulators.
arXiv Detail & Related papers (2020-03-16T18:40:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.