How AI Developers Overcome Communication Challenges in a
Multidisciplinary Team: A Case Study
- URL: http://arxiv.org/abs/2101.06098v1
- Date: Wed, 13 Jan 2021 19:33:34 GMT
- Title: How AI Developers Overcome Communication Challenges in a
Multidisciplinary Team: A Case Study
- Authors: David Piorkowski, Soya Park, April Yi Wang, Dakuo Wang, Michael
Muller, Felix Portnoy
- Abstract summary: The development of AI applications is a multidisciplinary effort, involving multiple roles collaborating with the AI developers.
During these collaborations, there is a knowledge mismatch between AI developers, who are skilled in data science, and external stakeholders who are typically not.
This difference leads to communication gaps, and the onus falls on AI developers to explain data science concepts to their collaborators.
- Score: 11.633108017016985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of AI applications is a multidisciplinary effort, involving
multiple roles collaborating with the AI developers, an umbrella term we use to
include data scientists and other AI-adjacent roles on the same team. During
these collaborations, there is a knowledge mismatch between AI developers, who
are skilled in data science, and external stakeholders who are typically not.
This difference leads to communication gaps, and the onus falls on AI
developers to explain data science concepts to their collaborators. In this
paper, we report on a study including analyses of both interviews with AI
developers and artifacts they produced for communication. Using the analytic
lens of shared mental models, we report on the types of communication gaps that
AI developers face, how AI developers communicate across disciplinary and
organizational boundaries, and how they simultaneously manage issues regarding
trust and expectations.
Related papers
- Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Capturing Humans' Mental Models of AI: An Item Response Theory Approach [12.129622383429597]
We show that people expect AI agents' performance to be significantly better on average than the performance of other humans.
Our results indicate that people expect AI agents' performance to be significantly better on average than the performance of other humans.
arXiv Detail & Related papers (2023-05-15T23:17:26Z) - Why is AI not a Panacea for Data Workers? An Interview Study on Human-AI
Collaboration in Data Storytelling [59.08591308749448]
We interviewed eighteen data workers from both industry and academia to learn where and how they would like to collaborate with AI.
Surprisingly, though the participants showed excitement about collaborating with AI, many of them also expressed reluctance and pointed out nuanced reasons.
arXiv Detail & Related papers (2023-04-17T15:30:05Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
This paper aims to ground what we dub a 'participatory turn' in AI design by synthesizing existing literature on participation and through empirical analysis of its current practices.
Based on our literature synthesis and empirical research, this paper presents a conceptual framework for analyzing participatory approaches to AI design.
arXiv Detail & Related papers (2021-11-01T17:57:04Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
We propose a user-centred framework for XAI that focuses on its social-interactive aspect.
The framework aims to provide a structure for interactive XAI solutions thought for non-expert users.
arXiv Detail & Related papers (2021-09-27T09:56:23Z) - An Ethical Framework for Guiding the Development of Affectively-Aware
Artificial Intelligence [0.0]
We propose guidelines for evaluating the (moral and) ethical consequences of affectively-aware AI.
We propose a multi-stakeholder analysis framework that separates the ethical responsibilities of AI Developers vis-a-vis the entities that deploy such AI.
We end with recommendations for researchers, developers, operators, as well as regulators and law-makers.
arXiv Detail & Related papers (2021-07-29T03:57:53Z) - Measuring Ethics in AI with AI: A Methodology and Dataset Construction [1.6861004263551447]
We propose to use such newfound capabilities of AI technologies to augment our AI measuring capabilities.
We do so by training a model to classify publications related to ethical issues and concerns.
We highlight the implications of AI metrics, in particular their contribution towards developing trustful and fair AI-based tools and technologies.
arXiv Detail & Related papers (2021-07-26T00:26:12Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.