Approximations with deep neural networks in Sobolev time-space
- URL: http://arxiv.org/abs/2101.06115v1
- Date: Wed, 23 Dec 2020 22:21:05 GMT
- Title: Approximations with deep neural networks in Sobolev time-space
- Authors: Ahmed Abdeljawad and Philipp Grohs
- Abstract summary: Solution of evolution equation generally lies in certain Bochner-Sobolev spaces.
Deep neural networks can approximate Sobolev-regular functions with respect to Bochner-Sobolev spaces.
- Score: 5.863264019032882
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solutions of evolution equation generally lies in certain Bochner-Sobolev
spaces, in which the solution may has regularity and integrability properties
for the time variable that can be different for the space variables. Therefore,
in this paper, we develop a framework shows that deep neural networks can
approximate Sobolev-regular functions with respect to Bochner-Sobolev spaces.
In our work we use the so-called Rectified Cubic Unit (ReCU) as an activation
function in our networks, which allows us to deduce approximation results of
the neural networks while avoiding issues caused by the non regularity of the
most commonly used Rectivied Linear Unit (ReLU) activation function.
Related papers
- Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks.
We study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility.
arXiv Detail & Related papers (2023-04-17T14:23:43Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
This work studies the design of neural networks that can process the weights or gradients of other neural networks.
We focus on the permutation symmetries that arise in the weights of deep feedforward networks because hidden layer neurons have no inherent order.
In our experiments, we find that permutation equivariant neural functionals are effective on a diverse set of tasks.
arXiv Detail & Related papers (2023-02-27T18:52:38Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
We provide theoretical evidence for learning low-dimensional state spaces, which can also model long-term memory.
Experiments corroborate our theory, demonstrating extrapolation via learning low-dimensional state spaces with both linear and non-linear RNNs.
arXiv Detail & Related papers (2022-10-25T14:45:15Z) - Sobolev-type embeddings for neural network approximation spaces [5.863264019032882]
We consider neural network approximation spaces that classify functions according to the rate at which they can be approximated.
We prove embedding theorems between these spaces for different values of $p$.
We find that, analogous to the case of classical function spaces, it is possible to trade "smoothness" (i.e., approximation rate) for increased integrability.
arXiv Detail & Related papers (2021-10-28T17:11:38Z) - Near-Minimax Optimal Estimation With Shallow ReLU Neural Networks [19.216784367141972]
We study the problem of estimating an unknown function from noisy data using shallow (single-hidden layer) ReLU neural networks.
We quantify the performance of these neural network estimators when the data-generating function belongs to the space of functions of second-order bounded variation in the Radon domain.
arXiv Detail & Related papers (2021-09-18T05:56:06Z) - Convolutional Filtering and Neural Networks with Non Commutative
Algebras [153.20329791008095]
We study the generalization of non commutative convolutional neural networks.
We show that non commutative convolutional architectures can be stable to deformations on the space of operators.
arXiv Detail & Related papers (2021-08-23T04:22:58Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability.
We quantify the relevant structure of the data in terms of a novel notion of mutual complexity.
arXiv Detail & Related papers (2021-07-31T10:25:26Z) - What Kinds of Functions do Deep Neural Networks Learn? Insights from
Variational Spline Theory [19.216784367141972]
We develop a variational framework to understand the properties of functions learned by deep neural networks with ReLU activation functions fit to data.
We derive a representer theorem showing that deep ReLU networks are solutions to regularized data fitting problems in this function space.
arXiv Detail & Related papers (2021-05-07T16:18:22Z) - Banach Space Representer Theorems for Neural Networks and Ridge Splines [17.12783792226575]
We develop a variational framework to understand the properties of the functions learned by neural networks fit to data.
We derive a representer theorem showing that finite-width, single-hidden layer neural networks are solutions to inverse problems.
arXiv Detail & Related papers (2020-06-10T02:57:37Z) - Approximation in shift-invariant spaces with deep ReLU neural networks [7.7084107194202875]
We study the expressive power of deep ReLU neural networks for approximating functions in dilated shift-invariant spaces.
Approximation error bounds are estimated with respect to the width and depth of neural networks.
arXiv Detail & Related papers (2020-05-25T07:23:47Z) - Neural Operator: Graph Kernel Network for Partial Differential Equations [57.90284928158383]
This work is to generalize neural networks so that they can learn mappings between infinite-dimensional spaces (operators)
We formulate approximation of the infinite-dimensional mapping by composing nonlinear activation functions and a class of integral operators.
Experiments confirm that the proposed graph kernel network does have the desired properties and show competitive performance compared to the state of the art solvers.
arXiv Detail & Related papers (2020-03-07T01:56:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.