A System for Efficiently Hunting for Cyber Threats in Computer Systems
Using Threat Intelligence
- URL: http://arxiv.org/abs/2101.06761v2
- Date: Thu, 25 Feb 2021 06:39:48 GMT
- Title: A System for Efficiently Hunting for Cyber Threats in Computer Systems
Using Threat Intelligence
- Authors: Peng Gao, Fei Shao, Xiaoyuan Liu, Xusheng Xiao, Haoyuan Liu, Zheng
Qin, Fengyuan Xu, Prateek Mittal, Sanjeev R. Kulkarni, Dawn Song
- Abstract summary: We build ThreatRaptor, a system that facilitates cyber threat hunting in computer systems using OSCTI.
ThreatRaptor provides (1) an unsupervised, light-weight, and accurate NLP pipeline that extracts structured threat behaviors from unstructured OSCTI text, (2) a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities, and (3) a query synthesis mechanism that automatically synthesizes a TBQL query from the extracted threat behaviors.
- Score: 78.23170229258162
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Log-based cyber threat hunting has emerged as an important solution to
counter sophisticated cyber attacks. However, existing approaches require
non-trivial efforts of manual query construction and have overlooked the rich
external knowledge about threat behaviors provided by open-source Cyber Threat
Intelligence (OSCTI). To bridge the gap, we build ThreatRaptor, a system that
facilitates cyber threat hunting in computer systems using OSCTI. Built upon
mature system auditing frameworks, ThreatRaptor provides (1) an unsupervised,
light-weight, and accurate NLP pipeline that extracts structured threat
behaviors from unstructured OSCTI text, (2) a concise and expressive
domain-specific query language, TBQL, to hunt for malicious system activities,
(3) a query synthesis mechanism that automatically synthesizes a TBQL query
from the extracted threat behaviors, and (4) an efficient query execution
engine to search the big system audit logging data.
Related papers
- SEvenLLM: Benchmarking, Eliciting, and Enhancing Abilities of Large Language Models in Cyber Threat Intelligence [27.550484938124193]
This paper introduces a framework to benchmark, elicit, and improve cybersecurity incident analysis and response abilities.
We create a high-quality bilingual instruction corpus by crawling cybersecurity raw text from cybersecurity websites.
The instruction dataset SEvenLLM-Instruct is used to train cybersecurity LLMs with the multi-task learning objective.
arXiv Detail & Related papers (2024-05-06T13:17:43Z) - Cyber Sentinel: Exploring Conversational Agents in Streamlining Security Tasks with GPT-4 [0.08192907805418582]
This paper introduces Cyber Sentinel, an innovative task-oriented cybersecurity dialogue system.
It embodies the fusion of artificial intelligence, cybersecurity domain expertise, and real-time data analysis to combat the multifaceted challenges posed by cyber adversaries.
Our work is a novel approach to task-oriented dialogue systems, leveraging the power of chaining GPT-4 models combined with prompt engineering.
arXiv Detail & Related papers (2023-09-28T13:18:33Z) - On the Security Risks of Knowledge Graph Reasoning [71.64027889145261]
We systematize the security threats to KGR according to the adversary's objectives, knowledge, and attack vectors.
We present ROAR, a new class of attacks that instantiate a variety of such threats.
We explore potential countermeasures against ROAR, including filtering of potentially poisoning knowledge and training with adversarially augmented queries.
arXiv Detail & Related papers (2023-05-03T18:47:42Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKG is an automated system for OSCTI gathering and management.
It efficiently collects a large number of OSCTI reports from multiple sources.
It uses specialized AI-based techniques to extract high-quality knowledge about various threat entities.
arXiv Detail & Related papers (2022-12-20T16:13:59Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
We evaluate and compare different Natural Language Processing (NLP) and machine learning techniques used for security information extraction in research.
Based on our investigations we propose a data processing pipeline that automatically classifies unstructured text according to attackers' tactics and techniques.
arXiv Detail & Related papers (2022-07-18T09:59:21Z) - Automating Cyber Threat Hunting Using NLP, Automated Query Generation,
and Genetic Perturbation [8.669461942767098]
We have developed the WILEE system that cyber threat hunting by translating high-level threat descriptions into many possible concrete implementations.
Both the (high-level) abstract and (low-level) concrete implementations are represented using a custom domain specific language.
WILEE uses the implementations along with other logic, also written in the DSL, to automatically generate queries to confirm (or refute) any hypotheses tied to the potential adversarial.
arXiv Detail & Related papers (2021-04-23T13:19:12Z) - A System for Automated Open-Source Threat Intelligence Gathering and
Management [53.65687495231605]
SecurityKG is a system for automated OSCTI gathering and management.
It uses a combination of AI and NLP techniques to extract high-fidelity knowledge about threat behaviors.
arXiv Detail & Related papers (2021-01-19T18:31:35Z) - Enabling Efficient Cyber Threat Hunting With Cyber Threat Intelligence [94.94833077653998]
ThreatRaptor is a system that facilitates threat hunting in computer systems using open-source Cyber Threat Intelligence (OSCTI)
It extracts structured threat behaviors from unstructured OSCTI text and uses a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities.
Evaluations on a broad set of attack cases demonstrate the accuracy and efficiency of ThreatRaptor in practical threat hunting.
arXiv Detail & Related papers (2020-10-26T14:54:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.