A Safe Hierarchical Planning Framework for Complex Driving Scenarios
based on Reinforcement Learning
- URL: http://arxiv.org/abs/2101.06778v1
- Date: Sun, 17 Jan 2021 20:45:42 GMT
- Title: A Safe Hierarchical Planning Framework for Complex Driving Scenarios
based on Reinforcement Learning
- Authors: Jinning Li, Liting Sun, Masayoshi Tomizuka and Wei Zhan
- Abstract summary: We propose a hierarchical behavior planning framework with a set of low-level safe controllers and a high-level reinforcement learning algorithm (H-CtRL) as a coordinator for the low-level controllers.
Safety is guaranteed by the low-level optimization/sampling-based controllers, while the high-level reinforcement learning algorithm makes H-CtRL an adaptive and efficient behavior planner.
The proposed H-CtRL is proved to be effective in various realistic simulation scenarios, with satisfying performance in terms of both safety and efficiency.
- Score: 23.007323699176467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous vehicles need to handle various traffic conditions and make safe
and efficient decisions and maneuvers. However, on the one hand, a single
optimization/sampling-based motion planner cannot efficiently generate safe
trajectories in real time, particularly when there are many interactive
vehicles near by. On the other hand, end-to-end learning methods cannot assure
the safety of the outcomes. To address this challenge, we propose a
hierarchical behavior planning framework with a set of low-level safe
controllers and a high-level reinforcement learning algorithm (H-CtRL) as a
coordinator for the low-level controllers. Safety is guaranteed by the
low-level optimization/sampling-based controllers, while the high-level
reinforcement learning algorithm makes H-CtRL an adaptive and efficient
behavior planner. To train and test our proposed algorithm, we built a
simulator that can reproduce traffic scenes using real-world datasets. The
proposed H-CtRL is proved to be effective in various realistic simulation
scenarios, with satisfying performance in terms of both safety and efficiency.
Related papers
- Let Hybrid A* Path Planner Obey Traffic Rules: A Deep Reinforcement Learning-Based Planning Framework [0.0]
In this work, we combine low-level algorithms such as the hybrid A* path planning with deep reinforcement learning (DRL) to make high-level decisions.
The hybrid A* planner is able to generate a collision-free trajectory to be executed by a model predictive controller (MPC)
In addition, the DRL algorithm is able to keep the lane change command consistent within a chosen time-period.
arXiv Detail & Related papers (2024-07-01T12:00:10Z) - Safety Correction from Baseline: Towards the Risk-aware Policy in
Robotics via Dual-agent Reinforcement Learning [64.11013095004786]
We propose a dual-agent safe reinforcement learning strategy consisting of a baseline and a safe agent.
Such a decoupled framework enables high flexibility, data efficiency and risk-awareness for RL-based control.
The proposed method outperforms the state-of-the-art safe RL algorithms on difficult robot locomotion and manipulation tasks.
arXiv Detail & Related papers (2022-12-14T03:11:25Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Bi-Level Optimization Augmented with Conditional Variational Autoencoder
for Autonomous Driving in Dense Traffic [0.9281671380673306]
This paper presents a parameterized bi-level optimization that jointly computes the optimal behavioural decisions and the resulting trajectory.
Our approach runs in real-time using a custom GPU-accelerated batch, and a Variational Autoencoder learnt warm-start strategy.
Our approach outperforms state-of-the-art model predictive control and RL approaches in terms of collision rate while being competitive in driving efficiency.
arXiv Detail & Related papers (2022-12-05T12:56:42Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
We present a differentiable simulator and a new policy learning algorithm (SHAC)
Our algorithm alleviates problems with local minima through a smooth critic function.
We show substantial improvements in sample efficiency and wall-clock time over state-of-the-art RL and differentiable simulation-based algorithms.
arXiv Detail & Related papers (2022-04-14T17:46:26Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - Trajectory Planning for Autonomous Vehicles Using Hierarchical
Reinforcement Learning [21.500697097095408]
Planning safe trajectories under uncertain and dynamic conditions makes the autonomous driving problem significantly complex.
Current sampling-based methods such as Rapidly Exploring Random Trees (RRTs) are not ideal for this problem because of the high computational cost.
We propose a Hierarchical Reinforcement Learning structure combined with a Proportional-Integral-Derivative (PID) controller for trajectory planning.
arXiv Detail & Related papers (2020-11-09T20:49:54Z) - Behavior Planning at Urban Intersections through Hierarchical
Reinforcement Learning [25.50973559614565]
In this work, we propose a behavior planning structure based on reinforcement learning (RL) which is capable of performing autonomous vehicle behavior planning with a hierarchical structure in simulated urban environments.
Our algorithms can perform better than rule-based methods for elective decisions such as when to turn left between vehicles approaching from the opposite direction or possible lane-change when approaching an intersection due to lane blockage or delay in front of the ego car.
Results also show that the proposed method converges to an optimal policy faster than traditional RL methods.
arXiv Detail & Related papers (2020-11-09T19:23:26Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
Learning-based control algorithms require data collection with abundant supervision for training.
We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained optimal control with dynamics learning and feedback control.
arXiv Detail & Related papers (2020-05-09T05:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.