Learning by Watching: Physical Imitation of Manipulation Skills from
Human Videos
- URL: http://arxiv.org/abs/2101.07241v1
- Date: Mon, 18 Jan 2021 18:50:32 GMT
- Title: Learning by Watching: Physical Imitation of Manipulation Skills from
Human Videos
- Authors: Haoyu Xiong, Quanzhou Li, Yun-Chun Chen, Homanga Bharadhwaj, Samarth
Sinha, Animesh Garg
- Abstract summary: We present an approach for physical imitation from human videos for robot manipulation tasks.
We design a perception module that learns to translate human videos to the robot domain followed by unsupervised keypoint detection.
We evaluate the effectiveness of our approach on five robot manipulation tasks, including reaching, pushing, sliding, coffee making, and drawer closing.
- Score: 28.712673809577076
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We present an approach for physical imitation from human videos for robot
manipulation tasks. The key idea of our method lies in explicitly exploiting
the kinematics and motion information embedded in the video to learn structured
representations that endow the robot with the ability to imagine how to perform
manipulation tasks in its own context. To achieve this, we design a perception
module that learns to translate human videos to the robot domain followed by
unsupervised keypoint detection. The resulting keypoint-based representations
provide semantically meaningful information that can be directly used for
reward computing and policy learning. We evaluate the effectiveness of our
approach on five robot manipulation tasks, including reaching, pushing,
sliding, coffee making, and drawer closing. Detailed experimental evaluations
demonstrate that our method performs favorably against previous approaches.
Related papers
- Learning by Watching: A Review of Video-based Learning Approaches for
Robot Manipulation [0.0]
Recent works have explored learning manipulation skills by passively watching abundant videos sourced online.
This survey reviews foundations such as video feature representation learning techniques, object affordance understanding, 3D hand/body modeling, and large-scale robot resources.
We discuss how learning only from observing large-scale human videos can enhance generalization and sample efficiency for robotic manipulation.
arXiv Detail & Related papers (2024-02-11T08:41:42Z) - Towards Generalizable Zero-Shot Manipulation via Translating Human
Interaction Plans [58.27029676638521]
We show how passive human videos can serve as a rich source of data for learning such generalist robots.
We learn a human plan predictor that, given a current image of a scene and a goal image, predicts the future hand and object configurations.
We show that our learned system can perform over 16 manipulation skills that generalize to 40 objects.
arXiv Detail & Related papers (2023-12-01T18:54:12Z) - Human-oriented Representation Learning for Robotic Manipulation [64.59499047836637]
Humans inherently possess generalizable visual representations that empower them to efficiently explore and interact with the environments in manipulation tasks.
We formalize this idea through the lens of human-oriented multi-task fine-tuning on top of pre-trained visual encoders.
Our Task Fusion Decoder consistently improves the representation of three state-of-the-art visual encoders for downstream manipulation policy-learning.
arXiv Detail & Related papers (2023-10-04T17:59:38Z) - Learning Video-Conditioned Policies for Unseen Manipulation Tasks [83.2240629060453]
Video-conditioned Policy learning maps human demonstrations of previously unseen tasks to robot manipulation skills.
We learn our policy to generate appropriate actions given current scene observations and a video of the target task.
We validate our approach on a set of challenging multi-task robot manipulation environments and outperform state of the art.
arXiv Detail & Related papers (2023-05-10T16:25:42Z) - Zero-Shot Robot Manipulation from Passive Human Videos [59.193076151832145]
We develop a framework for extracting agent-agnostic action representations from human videos.
Our framework is based on predicting plausible human hand trajectories.
We deploy the trained model zero-shot for physical robot manipulation tasks.
arXiv Detail & Related papers (2023-02-03T21:39:52Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
We use unlabeled videos of humans solving a wide range of manipulation tasks to learn a task-agnostic reward function for robotic manipulation policies.
The learned rewards are based on distances to a goal in an embedding space learned using a time-contrastive objective.
arXiv Detail & Related papers (2022-11-16T16:26:48Z) - Learning Object Manipulation Skills via Approximate State Estimation
from Real Videos [47.958512470724926]
Humans are adept at learning new tasks by watching a few instructional videos.
On the other hand, robots that learn new actions either require a lot of effort through trial and error, or use expert demonstrations that are challenging to obtain.
In this paper, we explore a method that facilitates learning object manipulation skills directly from videos.
arXiv Detail & Related papers (2020-11-13T08:53:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.