Collaboration among Image and Object Level Features for Image
Colourisation
- URL: http://arxiv.org/abs/2101.07576v1
- Date: Tue, 19 Jan 2021 11:48:12 GMT
- Title: Collaboration among Image and Object Level Features for Image
Colourisation
- Authors: Rita Pucci, Christian Micheloni, Niki Martinel
- Abstract summary: Image colourisation is an ill-posed problem, with multiple correct solutions which depend on the context and object instances present in the input datum.
Previous approaches attacked the problem either by requiring intense user interactions or by exploiting the ability of convolutional neural networks (CNNs) in learning image level (context) features.
We propose a single network, named UCapsNet, that separate image-level features obtained through convolutions and object-level features captured by means of capsules.
Then, by skip connections over different layers, we enforce collaboration between such disentangling factors to produce high quality and plausible image colourisation.
- Score: 25.60139324272782
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image colourisation is an ill-posed problem, with multiple correct solutions
which depend on the context and object instances present in the input datum.
Previous approaches attacked the problem either by requiring intense user
interactions or by exploiting the ability of convolutional neural networks
(CNNs) in learning image level (context) features. However, obtaining human
hints is not always feasible and CNNs alone are not able to learn object-level
semantics unless multiple models pretrained with supervision are considered. In
this work, we propose a single network, named UCapsNet, that separate
image-level features obtained through convolutions and object-level features
captured by means of capsules. Then, by skip connections over different layers,
we enforce collaboration between such disentangling factors to produce high
quality and plausible image colourisation. We pose the problem as a
classification task that can be addressed by a fully self-supervised approach,
thus requires no human effort. Experimental results on three benchmark datasets
show that our approach outperforms existing methods on standard quality metrics
and achieves a state of the art performances on image colourisation. A large
scale user study shows that our method is preferred over existing solutions.
Related papers
- Improving Human-Object Interaction Detection via Virtual Image Learning [68.56682347374422]
Human-Object Interaction (HOI) detection aims to understand the interactions between humans and objects.
In this paper, we propose to alleviate the impact of such an unbalanced distribution via Virtual Image Leaning (VIL)
A novel label-to-image approach, Multiple Steps Image Creation (MUSIC), is proposed to create a high-quality dataset that has a consistent distribution with real images.
arXiv Detail & Related papers (2023-08-04T10:28:48Z) - ParaColorizer: Realistic Image Colorization using Parallel Generative
Networks [1.7778609937758327]
Grayscale image colorization is a fascinating application of AI for information restoration.
We present a parallel GAN-based colorization framework.
We show the shortcomings of the non-perceptual evaluation metrics commonly used to assess multi-modal problems.
arXiv Detail & Related papers (2022-08-17T13:49:44Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - Learning Contrastive Representation for Semantic Correspondence [150.29135856909477]
We propose a multi-level contrastive learning approach for semantic matching.
We show that image-level contrastive learning is a key component to encourage the convolutional features to find correspondence between similar objects.
arXiv Detail & Related papers (2021-09-22T18:34:14Z) - TUCaN: Progressively Teaching Colourisation to Capsules [13.50327471049997]
We introduce a novel downsampling upsampling architecture named TUCaN (Tiny UCapsNet)
We pose the problem as a per pixel colour classification task that identifies colours as a bin in a quantized space.
To train the network, in contrast with the standard end to end learning method, we propose the progressive learning scheme to extract the context of objects.
arXiv Detail & Related papers (2021-06-29T08:44:15Z) - Learning to Focus: Cascaded Feature Matching Network for Few-shot Image
Recognition [38.49419948988415]
Deep networks can learn to accurately recognize objects of a category by training on a large number of images.
A meta-learning challenge known as a low-shot image recognition task comes when only a few images with annotations are available for learning a recognition model for one category.
Our method, called Cascaded Feature Matching Network (CFMN), is proposed to solve this problem.
Experiments for few-shot learning on two standard datasets, emphminiImageNet and Omniglot, have confirmed the effectiveness of our method.
arXiv Detail & Related papers (2021-01-13T11:37:28Z) - Learning to Compose Hypercolumns for Visual Correspondence [57.93635236871264]
We introduce a novel approach to visual correspondence that dynamically composes effective features by leveraging relevant layers conditioned on the images to match.
The proposed method, dubbed Dynamic Hyperpixel Flow, learns to compose hypercolumn features on the fly by selecting a small number of relevant layers from a deep convolutional neural network.
arXiv Detail & Related papers (2020-07-21T04:03:22Z) - Multiscale Deep Equilibrium Models [162.15362280927476]
We propose a new class of implicit networks, the multiscale deep equilibrium model (MDEQ)
An MDEQ directly solves for and backpropagates through the equilibrium points of multiple feature resolutions simultaneously.
We illustrate the effectiveness of this approach on two large-scale vision tasks: ImageNet classification and semantic segmentation on high-resolution images from the Cityscapes dataset.
arXiv Detail & Related papers (2020-06-15T18:07:44Z) - Instance-aware Image Colorization [51.12040118366072]
In this paper, we propose a method for achieving instance-aware colorization.
Our network architecture leverages an off-the-shelf object detector to obtain cropped object images.
We use a similar network to extract the full-image features and apply a fusion module to predict the final colors.
arXiv Detail & Related papers (2020-05-21T17:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.