Do we need to go Deep? Knowledge Tracing with Big Data
- URL: http://arxiv.org/abs/2101.08349v1
- Date: Wed, 20 Jan 2021 22:40:38 GMT
- Title: Do we need to go Deep? Knowledge Tracing with Big Data
- Authors: Varun Mandalapu, Jiaqi Gong and Lujie Chen
- Abstract summary: We use EdNet, the largest student interaction dataset publicly available in the education domain, to understand how accurately both deep and traditional models predict future student performances.
Our work observes that logistic regression models with carefully engineered features outperformed deep models from extensive experimentation.
- Score: 5.218882272051637
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interactive Educational Systems (IES) enabled researchers to trace student
knowledge in different skills and provide recommendations for a better learning
path. To estimate the student knowledge and further predict their future
performance, the interest in utilizing the student interaction data captured by
IES to develop learner performance models is increasing rapidly. Moreover, with
the advances in computing systems, the amount of data captured by these IES
systems is also increasing that enables deep learning models to compete with
traditional logistic models and Markov processes. However, it is still not
empirically evident if these deep models outperform traditional models on the
current scale of datasets with millions of student interactions. In this work,
we adopt EdNet, the largest student interaction dataset publicly available in
the education domain, to understand how accurately both deep and traditional
models predict future student performances. Our work observes that logistic
regression models with carefully engineered features outperformed deep models
from extensive experimentation. We follow this analysis with interpretation
studies based on Locally Interpretable Model-agnostic Explanation (LIME) to
understand the impact of various features on best performing model
pre-dictions.
Related papers
- Deep Generative Models in Robotics: A Survey on Learning from Multimodal Demonstrations [52.11801730860999]
In recent years, the robot learning community has shown increasing interest in using deep generative models to capture the complexity of large datasets.
We present the different types of models that the community has explored, such as energy-based models, diffusion models, action value maps, or generative adversarial networks.
We also present the different types of applications in which deep generative models have been used, from grasp generation to trajectory generation or cost learning.
arXiv Detail & Related papers (2024-08-08T11:34:31Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - CoDBench: A Critical Evaluation of Data-driven Models for Continuous
Dynamical Systems [8.410938527671341]
We introduce CodBench, an exhaustive benchmarking suite comprising 11 state-of-the-art data-driven models for solving differential equations.
Specifically, we evaluate 4 distinct categories of models, viz., feed forward neural networks, deep operator regression models, frequency-based neural operators, and transformer architectures.
We conduct extensive experiments, assessing the operators' capabilities in learning, zero-shot super-resolution, data efficiency, robustness to noise, and computational efficiency.
arXiv Detail & Related papers (2023-10-02T21:27:54Z) - Deep learning models for price forecasting of financial time series: A
review of recent advancements: 2020-2022 [6.05458608266581]
Deep learning models are replacing traditional statistical and machine learning models for price forecasting tasks.
This review delves deeply into deep learning-based forecasting models, presenting information on model architectures, practical applications, and their respective advantages and disadvantages.
The present contribution also includes potential directions for future research, such as examining the effectiveness of deep learning models with complex structures for price forecasting.
arXiv Detail & Related papers (2023-04-21T03:46:09Z) - Multi-granulariy Time-based Transformer for Knowledge Tracing [9.788039182463768]
We leverage students historical data, including their past test scores, to create a personalized model for each student.
We then use these models to predict their future performance on a given test.
arXiv Detail & Related papers (2023-04-11T14:46:38Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Pre-Trained Models: Past, Present and Future [126.21572378910746]
Large-scale pre-trained models (PTMs) have recently achieved great success and become a milestone in the field of artificial intelligence (AI)
By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks.
It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch.
arXiv Detail & Related papers (2021-06-14T02:40:32Z) - Distill on the Go: Online knowledge distillation in self-supervised
learning [1.1470070927586016]
Recent works have shown that wider and deeper models benefit more from self-supervised learning than smaller models.
We propose Distill-on-the-Go (DoGo), a self-supervised learning paradigm using single-stage online knowledge distillation.
Our results show significant performance gain in the presence of noisy and limited labels.
arXiv Detail & Related papers (2021-04-20T09:59:23Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.