Knowledge Graph Completion with Text-aided Regularization
- URL: http://arxiv.org/abs/2101.08962v1
- Date: Fri, 22 Jan 2021 06:10:09 GMT
- Title: Knowledge Graph Completion with Text-aided Regularization
- Authors: Tong Chen, Sirou Zhu, Yiming Wen, Zhaomin Zheng
- Abstract summary: Knowledge Graph Completion is a task of expanding the knowledge graph/base through estimating possible entities.
Traditional approaches mainly focus on using the existing graphical information that is intrinsic of the graph.
We try numerous ways of using extracted or raw textual information to help existing KG embedding frameworks reach better prediction results.
- Score: 2.8361571014635407
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Knowledge Graph Completion is a task of expanding the knowledge graph/base
through estimating possible entities, or proper nouns, that can be connected
using a set of predefined relations, or verb/predicates describing
interconnections of two things. Generally, we describe this problem as adding
new edges to a current network of vertices and edges. Traditional approaches
mainly focus on using the existing graphical information that is intrinsic of
the graph and train the corresponding embeddings to describe the information;
however, we think that the corpus that are related to the entities should also
contain information that can positively influence the embeddings to better make
predictions. In our project, we try numerous ways of using extracted or raw
textual information to help existing KG embedding frameworks reach better
prediction results, in the means of adding a similarity function to the
regularization part in the loss function. Results have shown that we have made
decent improvements over baseline KG embedding methods.
Related papers
- Graph Context Transformation Learning for Progressive Correspondence
Pruning [26.400567961735234]
We propose Graph Context Transformation Network (GCT-Net) enhancing context information to conduct consensus guidance for progressive correspondence pruning.
Specifically, we design the Graph Context Enhance Transformer which first generates the graph network and then transforms it into multi-branch graph contexts.
To further apply the recalibrated graph contexts to the global domain, we propose the Graph Context Guidance Transformer.
arXiv Detail & Related papers (2023-12-26T09:43:30Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
We investigate a previously overlooked phenomenon: in many cases, a densely connected, complementary graph can be found for the original graph.
The denser graph may share nodes with the original graph, which offers a natural bridge for transferring selective, meaningful knowledge.
We identify this setting as Graph Intersection-induced Transfer Learning (GITL), which is motivated by practical applications in e-commerce or academic co-authorship predictions.
arXiv Detail & Related papers (2023-02-27T22:56:06Z) - Joint Language Semantic and Structure Embedding for Knowledge Graph
Completion [66.15933600765835]
We propose to jointly embed the semantics in the natural language description of the knowledge triplets with their structure information.
Our method embeds knowledge graphs for the completion task via fine-tuning pre-trained language models.
Our experiments on a variety of knowledge graph benchmarks have demonstrated the state-of-the-art performance of our method.
arXiv Detail & Related papers (2022-09-19T02:41:02Z) - Learning Graph Regularisation for Guided Super-Resolution [77.7568596501908]
We introduce a novel formulation for guided super-resolution.
Its core is a differentiable optimisation layer that operates on a learned affinity graph.
We extensively evaluate our method on several datasets, and consistently outperform recent baselines in terms of quantitative reconstruction errors.
arXiv Detail & Related papers (2022-03-27T13:12:18Z) - Knowledge Sheaves: A Sheaf-Theoretic Framework for Knowledge Graph
Embedding [1.5469452301122175]
We show that knowledge graph embedding is naturally expressed in the topological and categorical language of textitcellular sheaves
A knowledge graph embedding can be described as an approximate global section of an appropriate textitknowledge sheaf over the graph.
The resulting embeddings can be easily adapted for reasoning over composite relations without special training.
arXiv Detail & Related papers (2021-10-07T20:54:40Z) - Edge: Enriching Knowledge Graph Embeddings with External Text [32.01476220906261]
We propose a knowledge graph enrichment and embedding framework named Edge.
Given an original knowledge graph, we first generate a rich but noisy augmented graph using external texts in semantic and structural level.
To distill the relevant knowledge and suppress the introduced noise, we design a graph alignment term in a shared embedding space between the original graph and augmented graph.
arXiv Detail & Related papers (2021-04-11T03:47:06Z) - Benchmarking neural embeddings for link prediction in knowledge graphs
under semantic and structural changes [6.23228063561537]
We propose an open-source evaluation pipeline, which benchmarks the accuracy of neural embeddings.
We define relation-centric connectivity measures that allow us to connect the link prediction capacity to the structure of the knowledge graph.
arXiv Detail & Related papers (2020-05-15T17:15:45Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z) - Relational Message Passing for Knowledge Graph Completion [78.47976646383222]
We propose a relational message passing method for knowledge graph completion.
It passes relational messages among edges iteratively to aggregate neighborhood information.
Results show our method outperforms stateof-the-art knowledge completion methods by a large margin.
arXiv Detail & Related papers (2020-02-17T03:33:41Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
We consider a novel formulation, zero-shot learning, to free this cumbersome curation.
For newly-added relations, we attempt to learn their semantic features from their text descriptions.
We leverage Generative Adrial Networks (GANs) to establish the connection between text and knowledge graph domain.
arXiv Detail & Related papers (2020-01-08T01:19:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.