Hierarchical Variational Auto-Encoding for Unsupervised Domain
Generalization
- URL: http://arxiv.org/abs/2101.09436v3
- Date: Sat, 27 Feb 2021 13:35:03 GMT
- Title: Hierarchical Variational Auto-Encoding for Unsupervised Domain
Generalization
- Authors: Xudong Sun, Florian Buettner
- Abstract summary: We choose a generative approach within the framework of variational autoencoders and propose an unsupervised algorithm that is able to generalize to new domains without supervision.
Our method is able to learn representations that disentangle domain-specific information from class-label specific information even in complex settings.
- Score: 4.670305538969914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the task of domain generalization, where the goal is to train a
predictive model based on a number of domains such that it is able to
generalize to a new, previously unseen domain. We choose a generative approach
within the framework of variational autoencoders and propose an unsupervised
algorithm that is able to generalize to new domains without supervision. We
show that our method is able to learn representations that disentangle
domain-specific information from class-label specific information even in
complex settings where an unobserved substructure is present in domains. Our
interpretable method outperforms previously proposed generative algorithms for
domain generalization and achieves competitive performance compared to
state-of-the-art approaches, which are based on complex image-processing steps,
on the standard domain generalization benchmark dataset PACS. Additionally, we
proposed weak domain supervision which can further increase the performance of
our algorithm in the PACS dataset.
Related papers
- Randomized Adversarial Style Perturbations for Domain Generalization [49.888364462991234]
We propose a novel domain generalization technique, referred to as Randomized Adversarial Style Perturbation (RASP)
The proposed algorithm perturbs the style of a feature in an adversarial direction towards a randomly selected class, and makes the model learn against being misled by the unexpected styles observed in unseen target domains.
We evaluate the proposed algorithm via extensive experiments on various benchmarks and show that our approach improves domain generalization performance, especially in large-scale benchmarks.
arXiv Detail & Related papers (2023-04-04T17:07:06Z) - Complementary Domain Adaptation and Generalization for Unsupervised
Continual Domain Shift Learning [4.921899151930171]
Unsupervised continual domain shift learning is a significant challenge in real-world applications.
We propose Complementary Domain Adaptation and Generalization (CoDAG), a simple yet effective learning framework.
Our approach is model-agnostic, meaning that it is compatible with any existing domain adaptation and generalization algorithms.
arXiv Detail & Related papers (2023-03-28T09:05:15Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
We introduce Style-induced Domain-specific Normalization (SDNorm) to re-normalize the multi-modal underlying distributions.
We harness the prototype representations, the centroids of classes, to perform relational modeling in the embedding space.
Experiments on four standard Domain Generalization benchmarks reveal that COMEN exceeds the state-of-the-art performance without the need of domain supervision.
arXiv Detail & Related papers (2022-03-24T11:54:59Z) - Domain Generalisation for Object Detection under Covariate and Concept Shift [10.32461766065764]
Domain generalisation aims to promote the learning of domain-invariant features while suppressing domain-specific features.
An approach to domain generalisation for object detection is proposed, the first such approach applicable to any object detection architecture.
arXiv Detail & Related papers (2022-03-10T11:14:18Z) - Unsupervised Domain Generalization for Person Re-identification: A
Domain-specific Adaptive Framework [50.88463458896428]
Domain generalization (DG) has attracted much attention in person re-identification (ReID) recently.
Existing methods usually need the source domains to be labeled, which could be a significant burden for practical ReID tasks.
We propose a simple and efficient domain-specific adaptive framework, and realize it with an adaptive normalization module.
arXiv Detail & Related papers (2021-11-30T02:35:51Z) - Context-Conditional Adaptation for Recognizing Unseen Classes in Unseen
Domains [48.17225008334873]
We propose a feature generative framework integrated with a COntext COnditional Adaptive (COCOA) Batch-Normalization.
The generated visual features better capture the underlying data distribution enabling us to generalize to unseen classes and domains at test-time.
We thoroughly evaluate and analyse our approach on established large-scale benchmark - DomainNet.
arXiv Detail & Related papers (2021-07-15T17:51:16Z) - Model-Based Domain Generalization [96.84818110323518]
We propose a novel approach for the domain generalization problem called Model-Based Domain Generalization.
Our algorithms beat the current state-of-the-art methods on the very-recently-proposed WILDS benchmark by up to 20 percentage points.
arXiv Detail & Related papers (2021-02-23T00:59:02Z) - Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain
Adaptive Semantic Segmentation [102.42638795864178]
We propose a principled meta-learning based approach to OCDA for semantic segmentation.
We cluster target domain into multiple sub-target domains by image styles, extracted in an unsupervised manner.
A meta-learner is thereafter deployed to learn to fuse sub-target domain-specific predictions, conditioned upon the style code.
We learn to online update the model by model-agnostic meta-learning (MAML) algorithm, thus to further improve generalization.
arXiv Detail & Related papers (2020-12-15T13:21:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.