Activation Functions in Artificial Neural Networks: A Systematic
Overview
- URL: http://arxiv.org/abs/2101.09957v1
- Date: Mon, 25 Jan 2021 08:55:26 GMT
- Title: Activation Functions in Artificial Neural Networks: A Systematic
Overview
- Authors: Johannes Lederer
- Abstract summary: Activation functions shape the outputs of artificial neurons.
This paper provides an analytic yet up-to-date overview of popular activation functions and their properties.
- Score: 0.3553493344868413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Activation functions shape the outputs of artificial neurons and, therefore,
are integral parts of neural networks in general and deep learning in
particular. Some activation functions, such as logistic and relu, have been
used for many decades. But with deep learning becoming a mainstream research
topic, new activation functions have mushroomed, leading to confusion in both
theory and practice. This paper provides an analytic yet up-to-date overview of
popular activation functions and their properties, which makes it a timely
resource for anyone who studies or applies neural networks.
Related papers
- Activations Through Extensions: A Framework To Boost Performance Of Neural Networks [6.302159507265204]
Activation functions are non-linearities in neural networks that allow them to learn complex mapping between inputs and outputs.
We propose a framework that unifies several works on activation functions and theoretically explains the performance benefits of these works.
arXiv Detail & Related papers (2024-08-07T07:36:49Z) - Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
A potential solution to this issue is Neuro-Symbolic Integration (NeSy), where neural approaches are combined with symbolic reasoning.
Most of these methods exploit a neural network to map perceptions to symbols and a logical reasoner to predict the output of the downstream task.
They suffer from several issues, including slow convergence, learning difficulties with complex perception tasks, and convergence to local minima.
This paper proposes a simple yet effective method to ameliorate these problems.
arXiv Detail & Related papers (2024-02-21T15:51:01Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - Measures of Information Reflect Memorization Patterns [53.71420125627608]
We show that the diversity in the activation patterns of different neurons is reflective of model generalization and memorization.
Importantly, we discover that information organization points to the two forms of memorization, even for neural activations computed on unlabelled in-distribution examples.
arXiv Detail & Related papers (2022-10-17T20:15:24Z) - Synergistic information supports modality integration and flexible
learning in neural networks solving multiple tasks [107.8565143456161]
We investigate the information processing strategies adopted by simple artificial neural networks performing a variety of cognitive tasks.
Results show that synergy increases as neural networks learn multiple diverse tasks.
randomly turning off neurons during training through dropout increases network redundancy, corresponding to an increase in robustness.
arXiv Detail & Related papers (2022-10-06T15:36:27Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - A survey on recently proposed activation functions for Deep Learning [0.0]
This survey discusses the main concepts of activation functions in neural networks.
It includes a brief introduction to deep neural networks, a summary of what are activation functions and how they are used in neural networks, their most common properties, the different types of activation functions, some of the challenges, limitations, and alternative solutions faced by activation functions.
arXiv Detail & Related papers (2022-04-06T16:21:52Z) - Advantages of biologically-inspired adaptive neural activation in RNNs
during learning [10.357949759642816]
We introduce a novel parametric family of nonlinear activation functions inspired by input-frequency response curves of biological neurons.
We find that activation adaptation provides distinct task-specific solutions and in some cases, improves both learning speed and performance.
arXiv Detail & Related papers (2020-06-22T13:49:52Z) - A survey on modern trainable activation functions [0.0]
We propose a taxonomy of trainable activation functions and highlight common and distinctive proprieties of recent and past models.
We show that many of the proposed approaches are equivalent to adding neuron layers which use fixed (non-trainable) activation functions.
arXiv Detail & Related papers (2020-05-02T12:38:43Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z) - Learning Neural Activations [2.842794675894731]
We explore what happens when the activation function of each neuron in an artificial neural network is learned from data alone.
This is achieved by modelling the activation function of each neuron as a small neural network whose weights are shared by all neurons in the original network.
arXiv Detail & Related papers (2019-12-27T15:52:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.