Identity-aware Graph Neural Networks
- URL: http://arxiv.org/abs/2101.10320v2
- Date: Fri, 5 Feb 2021 08:14:23 GMT
- Title: Identity-aware Graph Neural Networks
- Authors: Jiaxuan You, Jonathan Gomes-Selman, Rex Ying, Jure Leskovec
- Abstract summary: We develop a class of message passing Graph Neural Networks (ID-GNNs) with greater expressive power than the 1-WL test.
ID-GNN extends existing GNN architectures by inductively considering nodes' identities during message passing.
We show that transforming existing GNNs to ID-GNNs yields on average 40% accuracy improvement on challenging node, edge, and graph property prediction tasks.
- Score: 63.6952975763946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Message passing Graph Neural Networks (GNNs) provide a powerful modeling
framework for relational data. However, the expressive power of existing GNNs
is upper-bounded by the 1-Weisfeiler-Lehman (1-WL) graph isomorphism test,
which means GNNs that are not able to predict node clustering coefficients and
shortest path distances, and cannot differentiate between different d-regular
graphs. Here we develop a class of message passing GNNs, named Identity-aware
Graph Neural Networks (ID-GNNs), with greater expressive power than the 1-WL
test. ID-GNN offers a minimal but powerful solution to limitations of existing
GNNs. ID-GNN extends existing GNN architectures by inductively considering
nodes' identities during message passing. To embed a given node, ID-GNN first
extracts the ego network centered at the node, then conducts rounds of
heterogeneous message passing, where different sets of parameters are applied
to the center node than to other surrounding nodes in the ego network. We
further propose a simplified but faster version of ID-GNN that injects node
identity information as augmented node features. Altogether, both versions of
ID-GNN represent general extensions of message passing GNNs, where experiments
show that transforming existing GNNs to ID-GNNs yields on average 40% accuracy
improvement on challenging node, edge, and graph property prediction tasks; 3%
accuracy improvement on node and graph classification benchmarks; and 15% ROC
AUC improvement on real-world link prediction tasks. Additionally, ID-GNNs
demonstrate improved or comparable performance over other task-specific graph
networks.
Related papers
- Geodesic Graph Neural Network for Efficient Graph Representation
Learning [34.047527874184134]
We propose an efficient GNN framework called Geodesic GNN (GDGNN)
It injects conditional relationships between nodes into the model without labeling.
Conditioned on the geodesic representations, GDGNN is able to generate node, link, and graph representations that carry much richer structural information than plain GNNs.
arXiv Detail & Related papers (2022-10-06T02:02:35Z) - Network In Graph Neural Network [9.951298152023691]
We present a model-agnostic methodology that allows arbitrary GNN models to increase their model capacity by making the model deeper.
Instead of adding or widening GNN layers, NGNN deepens a GNN model by inserting non-linear feedforward neural network layer(s) within each GNN layer.
arXiv Detail & Related papers (2021-11-23T03:58:56Z) - Feature Correlation Aggregation: on the Path to Better Graph Neural
Networks [37.79964911718766]
Prior to the introduction of Graph Neural Networks (GNNs), modeling and analyzing irregular data, particularly graphs, was thought to be the Achilles' heel of deep learning.
This paper introduces a central node permutation variant function through a frustratingly simple and innocent-looking modification to the core operation of a GNN.
A tangible boost in performance of the model is observed where the model surpasses previous state-of-the-art results by a significant margin while employing fewer parameters.
arXiv Detail & Related papers (2021-09-20T05:04:26Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
Graph neural networks (GNNs) are effective models for representation learning on relational data.
Standard GNNs are limited in their expressive power, as they cannot distinguish beyond the capability of the Weisfeiler-Leman graph isomorphism.
In this work, we analyze the expressive power of GNNs with random node (RNI)
We prove that these models are universal, a first such result for GNNs not relying on computationally demanding higher-order properties.
arXiv Detail & Related papers (2020-10-02T19:53:05Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - Graph Neural Networks: Architectures, Stability and Transferability [176.3960927323358]
Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs.
They are generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters.
arXiv Detail & Related papers (2020-08-04T18:57:36Z) - Generalization and Representational Limits of Graph Neural Networks [46.20253808402385]
We prove that several important graph properties cannot be computed by graph neural networks (GNNs) that rely entirely on local information.
We provide the first data dependent generalization bounds for message passing GNNs.
Our bounds are much tighter than existing VC-dimension based guarantees for GNNs, and are comparable to Rademacher bounds for recurrent neural networks.
arXiv Detail & Related papers (2020-02-14T18:10:14Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
Graph Neural Network (GNN) is a powerful model to learn representations and make predictions on graph data.
We propose a new graph convolution operator, which augments the weighted sum with pairwise interactions of the representations of neighbor nodes.
We term this framework as Bilinear Graph Neural Network (BGNN), which improves GNN representation ability with bilinear interactions between neighbor nodes.
arXiv Detail & Related papers (2020-02-10T06:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.