Introducing a Central African Primate Vocalisation Dataset for Automated
Species Classification
- URL: http://arxiv.org/abs/2101.10390v1
- Date: Mon, 25 Jan 2021 20:21:54 GMT
- Title: Introducing a Central African Primate Vocalisation Dataset for Automated
Species Classification
- Authors: Joeri A. Zwerts, Jelle Treep, Casper S. Kaandorp, Floor Meewis, Amparo
C. Koot, Heysem Kaya
- Abstract summary: We introduce the collected dataset, describe our approach and initial results.
We condensed the recordings with an energy/change based automatic vocalisation detection.
Initial results reveal up to 82% unweighted average recall (UAR) test set performance in four-class primate species classification.
- Score: 4.322922553076088
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Automated classification of animal vocalisations is a potentially powerful
wildlife monitoring tool. Training robust classifiers requires sizable
annotated datasets, which are not easily recorded in the wild. To circumvent
this problem, we recorded four primate species under semi-natural conditions in
a wildlife sanctuary in Cameroon with the objective to train a classifier
capable of detecting species in the wild. Here, we introduce the collected
dataset, describe our approach and initial results of classifier development.
To increase the efficiency of the annotation process, we condensed the
recordings with an energy/change based automatic vocalisation detection.
Segmenting the annotated chunks into training, validation and test sets,
initial results reveal up to 82% unweighted average recall (UAR) test set
performance in four-class primate species classification.
Related papers
- Advanced Framework for Animal Sound Classification With Features Optimization [35.2832738406242]
We propose an automated classification framework applicable to general animal sound classification.
Our approach consistently outperforms baseline methods by over 25% in precision, recall, and accuracy.
arXiv Detail & Related papers (2024-07-03T18:33:47Z) - Co-training for Low Resource Scientific Natural Language Inference [65.37685198688538]
We propose a novel co-training method that assigns weights based on the training dynamics of the classifiers to the distantly supervised labels.
By assigning importance weights instead of filtering out examples based on an arbitrary threshold on the predicted confidence, we maximize the usage of automatically labeled data.
The proposed method obtains an improvement of 1.5% in Macro F1 over the distant supervision baseline, and substantial improvements over several other strong SSL baselines.
arXiv Detail & Related papers (2024-06-20T18:35:47Z) - Automated Bioacoustic Monitoring for South African Bird Species on Unlabeled Data [1.3506669466260703]
The framework automatically extracted labeled data from available platforms for selected avian species.
The labeled data were embedded into recordings, including environmental sounds and noise, and were used to train convolutional recurrent neural network (CRNN) models.
The Adapted SED-CRNN model reached a F1 score of 0.73, demonstrating its efficiency under noisy, real-world conditions.
arXiv Detail & Related papers (2024-06-19T14:14:24Z) - All Thresholds Barred: Direct Estimation of Call Density in Bioacoustic
Data [1.7916003204531015]
We propose a validation scheme for estimating call density in a body of data.
We use these distributions to predict site-level densities, which may be subject to distribution shifts.
arXiv Detail & Related papers (2024-02-23T14:52:44Z) - WhaleNet: a Novel Deep Learning Architecture for Marine Mammals Vocalizations on Watkins Marine Mammal Sound Database [49.1574468325115]
We introduce textbfWhaleNet (Wavelet Highly Adaptive Learning Ensemble Network), a sophisticated deep ensemble architecture for the classification of marine mammal vocalizations.
We achieve an improvement in classification accuracy by $8-10%$ over existing architectures, corresponding to a classification accuracy of $97.61%$.
arXiv Detail & Related papers (2024-02-20T11:36:23Z) - Improving Primate Sounds Classification using Binary Presorting for Deep
Learning [6.044912425856236]
In this work, we introduce a generalized approach that first relabels subsegments of MEL spectrogram representations.
For both the binary pre-sorting and the classification, we make use of convolutional neural networks (CNN) and various data-augmentation techniques.
We showcase the results of this approach on the challenging textitComparE 2021 dataset, with the task of classifying between different primate species sounds.
arXiv Detail & Related papers (2023-06-28T09:35:09Z) - Low-complexity deep learning frameworks for acoustic scene
classification [64.22762153453175]
We present low-complexity deep learning frameworks for acoustic scene classification (ASC)
The proposed frameworks can be separated into four main steps: Front-end spectrogram extraction, online data augmentation, back-end classification, and late fusion of predicted probabilities.
Our experiments conducted on DCASE 2022 Task 1 Development dataset have fullfiled the requirement of low-complexity and achieved the best classification accuracy of 60.1%.
arXiv Detail & Related papers (2022-06-13T11:41:39Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
We propose textitPrototypical, which does not require fitting additional parameters given the embedding network.
Prototypical produces balanced and comparable predictions for all classes even though the training set is class-imbalanced.
We test our method on CIFAR-10LT, CIFAR-100LT and Webvision datasets, observing that Prototypical obtains substaintial improvements compared with state of the arts.
arXiv Detail & Related papers (2021-10-22T01:55:01Z) - Recognizing bird species in diverse soundscapes under weak supervision [0.2148535041822524]
We present a robust classification approach for avian vocalization in complex and diverse soundscapes, achieving second place in the BirdCLEF 2021 challenge.
We illustrate how to make full use of pre-trained convolutional neural networks, by using an efficient modeling and training routine supplemented by novel augmentation methods.
arXiv Detail & Related papers (2021-07-16T06:54:38Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
We present a bioacoustic signal classifier equipped with a discriminative mechanism to extract useful features for analysis and classification efficiently.
Unlike current bioacoustic recognition methods, which are task-oriented, the proposed model relies on transforming the input signals into vector subspaces.
The validity of the proposed method is verified using three challenging bioacoustic datasets containing anuran, bee, and mosquito species.
arXiv Detail & Related papers (2021-03-18T11:01:21Z) - Unsupervised Domain Adaptation for Acoustic Scene Classification Using
Band-Wise Statistics Matching [69.24460241328521]
Machine learning algorithms can be negatively affected by mismatches between training (source) and test (target) data distributions.
We propose an unsupervised domain adaptation method that consists of aligning the first- and second-order sample statistics of each frequency band of target-domain acoustic scenes to the ones of the source-domain training dataset.
We show that the proposed method outperforms the state-of-the-art unsupervised methods found in the literature in terms of both source- and target-domain classification accuracy.
arXiv Detail & Related papers (2020-04-30T23:56:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.