Appliance Operation Modes Identification Using Cycles Clustering
- URL: http://arxiv.org/abs/2101.10472v1
- Date: Mon, 25 Jan 2021 23:25:45 GMT
- Title: Appliance Operation Modes Identification Using Cycles Clustering
- Authors: Abdelkareem Jaradat, Hanan Lutfiyya, Anwar Haque
- Abstract summary: Internet of Things (IoT) and Machine Learning (ML) deliver techniques that have the potential to efficiently conserve energy.
SHEMSs have the potential to contribute in energy conservation through the application of Demand Response (DR) in the residential sector.
- Score: 3.328276101150529
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing cost, energy demand, and environmental issues has led many
researchers to find approaches for energy monitoring, and hence energy
conservation. The emerging technologies of Internet of Things (IoT) and Machine
Learning (ML) deliver techniques that have the potential to efficiently
conserve energy and improve the utilization of energy consumption. Smart Home
Energy Management Systems (SHEMSs) have the potential to contribute in energy
conservation through the application of Demand Response (DR) in the residential
sector. In this paper, we propose appliances Operation Modes Identification
using Cycles Clustering (OMICC) which is SHEMS fundamental approach that
utilizes the sensed residential disaggregated power consumption in supporting
DR by providing consumers the opportunity to select lighter appliance operation
modes. The cycles of the Single Usage Profile (SUP) of an appliance are
extracted and reformed into features in terms of clusters of cycles. These
features are then used to identify the operation mode used in every occurrence
using K-Nearest Neighbors (KNN). Operation modes identification is considered a
basis for many potential smart DR applications within SHEMS towards the
consumers or the suppliers
Related papers
- EnergAIze: Multi Agent Deep Deterministic Policy Gradient for Vehicle to Grid Energy Management [0.0]
This paper introduces EnergAIze, a Multi-Agent Reinforcement Learning (MARL) energy management framework.
It enables user-centric and multi-objective energy management by allowing each prosumer to select from a range of personal management objectives.
The efficacy of EnergAIze was evaluated through case studies employing the CityLearn simulation framework.
arXiv Detail & Related papers (2024-04-02T23:16:17Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Adaptive Energy Management for Self-Sustainable Wearables in Mobile
Health [21.97214707198675]
Small form factor of wearable devices limits the battery size and operating lifetime.
Energy harvesting has emerged as an effective method towards sustainable operation of wearable devices.
This paper studies the novel problem of adaptive energy management towards the goal of self-sustainable wearables by using harvested energy to supplement the battery energy and to reduce manual recharging by users.
arXiv Detail & Related papers (2022-01-16T23:49:20Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
An Intelligent IoT Environment (iIoTe) is comprised of heterogeneous devices that can collaboratively execute semi-autonomous IoT applications.
This paper provides a state-of-the-art overview of these technologies and illustrates their functionality and performance, with special attention to the tradeoff among resources, latency, privacy and energy consumption.
arXiv Detail & Related papers (2021-10-04T19:41:42Z) - Adversarial Energy Disaggregation for Non-intrusive Load Monitoring [78.47901044638525]
Energy disaggregation, also known as non-intrusive load monitoring (NILM), challenges the problem of separating the whole-home electricity usage into appliance-specific individual consumptions.
Recent advances reveal that deep neural networks (DNNs) can get favorable performance for NILM.
We introduce the idea of adversarial learning into NILM, which is new for the energy disaggregation task.
arXiv Detail & Related papers (2021-08-02T03:56:35Z) - Reshaping consumption habits by exploiting energy-related micro-moment
recommendations: A case study [2.741120981602367]
This work builds on the detection of repeated usage patterns from consumption logs.
It presents the structure and operation of an energy consumption reduction system, which employs a set of sensors, smart-meters and actuators.
The system recommends to the user the proper energy saving action at the right moment and gradually shapes user's habits.
arXiv Detail & Related papers (2020-10-09T17:29:56Z) - Demand Responsive Dynamic Pricing Framework for Prosumer Dominated
Microgrids using Multiagent Reinforcement Learning [59.28219519916883]
This paper proposes a new multiagent Reinforcement Learning based decision-making environment for implementing a Real-Time Pricing (RTP) DR technique in a prosumer dominated microgrid.
The proposed technique addresses several shortcomings common to traditional DR methods and provides significant economic benefits to the grid operator and prosumers.
arXiv Detail & Related papers (2020-09-23T01:44:57Z) - A Hierarchical Approach to Multi-Energy Demand Response: From
Electricity to Multi-Energy Applications [1.5084441395740482]
This paper looks into an opportunity to control energy consumption of an aggregation of many residential, commercial and industrial consumers.
This ensemble control becomes a modern demand response contributor to the set of modeling tools for multi-energy infrastructure systems.
arXiv Detail & Related papers (2020-05-05T17:17:51Z) - Energy Disaggregation with Semi-supervised Sparse Coding [0.0]
Energy disaggregation research aims to decompose the aggregated energy consumption data into its component appliances.
In this paper, a discriminative disaggregation model based on sparse coding has been evaluated on large-scale household power usage dataset for energy conservation.
arXiv Detail & Related papers (2020-04-20T21:05:25Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.