Ensembling complex network 'perspectives' for mild cognitive impairment
detection with artificial neural networks
- URL: http://arxiv.org/abs/2101.10629v1
- Date: Tue, 26 Jan 2021 08:38:11 GMT
- Title: Ensembling complex network 'perspectives' for mild cognitive impairment
detection with artificial neural networks
- Authors: Eufemia Lella, Gennaro Vessio
- Abstract summary: We propose a novel method for mild cognitive impairment detection based on jointly exploiting the complex network and the neural network paradigm.
In particular, the method is based on ensembling different brain structural "perspectives" with artificial neural networks.
- Score: 5.194561180498554
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we propose a novel method for mild cognitive impairment
detection based on jointly exploiting the complex network and the neural
network paradigm. In particular, the method is based on ensembling different
brain structural "perspectives" with artificial neural networks. On one hand,
these perspectives are obtained with complex network measures tailored to
describe the altered brain connectivity. In turn, the brain reconstruction is
obtained by combining diffusion-weighted imaging (DWI) data to tractography
algorithms. On the other hand, artificial neural networks provide a means to
learn a mapping from topological properties of the brain to the presence or
absence of cognitive decline. The effectiveness of the method is studied on a
well-known benchmark data set in order to evaluate if it can provide an
automatic tool to support the early disease diagnosis. Also, the effects of
balancing issues are investigated to further assess the reliability of the
complex network approach to DWI data.
Related papers
- Adapting the Biological SSVEP Response to Artificial Neural Networks [5.4712259563296755]
This paper introduces a novel approach to neuron significance assessment inspired by frequency tagging, a technique from neuroscience.
Experiments conducted with a convolutional neural network for image classification reveal notable harmonics and intermodulations in neuron-specific responses under part-based frequency tagging.
The proposed method holds promise for applications in network pruning, and model interpretability, contributing to the advancement of explainable artificial intelligence.
arXiv Detail & Related papers (2024-11-15T10:02:48Z) - Statistical tuning of artificial neural network [0.0]
This study introduces methods to enhance the understanding of neural networks, focusing specifically on models with a single hidden layer.
We propose statistical tests to assess the significance of input neurons and introduce algorithms for dimensionality reduction.
This research advances the field of Explainable Artificial Intelligence by presenting robust statistical frameworks for interpreting neural networks.
arXiv Detail & Related papers (2024-09-24T19:47:03Z) - D-CoRP: Differentiable Connectivity Refinement for Functional Brain Networks [4.675640373196467]
Existing models for brain networks typically focus on brain regions or overlook the complexity of brain connectivities.
We develop a differentiable module for refining brain connectivity.
Our experimental results show that the proposed method can significantly improve the performance of various baseline models.
arXiv Detail & Related papers (2024-05-28T23:49:52Z) - BrainNetDiff: Generative AI Empowers Brain Network Generation via
Multimodal Diffusion Model [7.894526238189559]
We introduce BrainNetDiff, which combines a multi-head Transformer encoder to extract relevant features from fMRI time series.
We validate applicability of this framework in the construction of brain network across healthy and neurologically impaired cohorts.
arXiv Detail & Related papers (2023-11-09T08:27:12Z) - Correlative Information Maximization: A Biologically Plausible Approach
to Supervised Deep Neural Networks without Weight Symmetry [43.584567991256925]
We propose a new normative approach to describe the signal propagation in biological neural networks in both forward and backward directions.
This framework addresses many concerns about the biological-plausibility of conventional artificial neural networks and the backpropagation algorithm.
Our approach provides a natural resolution to the weight symmetry problem between forward and backward signal propagation paths.
arXiv Detail & Related papers (2023-06-07T22:14:33Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Searching for the Essence of Adversarial Perturbations [73.96215665913797]
We show that adversarial perturbations contain human-recognizable information, which is the key conspirator responsible for a neural network's erroneous prediction.
This concept of human-recognizable information allows us to explain key features related to adversarial perturbations.
arXiv Detail & Related papers (2022-05-30T18:04:57Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
We introduce a new classification system that utilizes brain connectivity with a CNN and validate its effectiveness via the emotional video classification.
The level of concentration of the brain connectivity related to the emotional property of the target video is correlated with classification performance.
arXiv Detail & Related papers (2021-01-18T13:28:08Z) - Towards Interaction Detection Using Topological Analysis on Neural
Networks [55.74562391439507]
In neural networks, any interacting features must follow a strongly weighted connection to common hidden units.
We propose a new measure for quantifying interaction strength, based upon the well-received theory of persistent homology.
A Persistence Interaction detection(PID) algorithm is developed to efficiently detect interactions.
arXiv Detail & Related papers (2020-10-25T02:15:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.