I Beg to Differ: A study of constructive disagreement in online
conversations
- URL: http://arxiv.org/abs/2101.10917v1
- Date: Tue, 26 Jan 2021 16:36:43 GMT
- Title: I Beg to Differ: A study of constructive disagreement in online
conversations
- Authors: Christine de Kock and Andreas Vlachos
- Abstract summary: We construct a corpus of 7 425 Wikipedia Talk page conversations that contain content disputes.
We define the task of predicting whether disagreements will be escalated to mediation by a moderator.
We develop a variety of neural models and show that taking into account the structure of the conversation improves predictive accuracy.
- Score: 15.581515781839656
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Disagreements are pervasive in human communication. In this paper we
investigate what makes disagreement constructive. To this end, we construct
WikiDisputes, a corpus of 7 425 Wikipedia Talk page conversations that contain
content disputes, and define the task of predicting whether disagreements will
be escalated to mediation by a moderator. We evaluate feature-based models with
linguistic markers from previous work, and demonstrate that their performance
is improved by using features that capture changes in linguistic markers
throughout the conversations, as opposed to averaged values. We develop a
variety of neural models and show that taking into account the structure of the
conversation improves predictive accuracy, exceeding that of feature-based
models. We assess our best neural model in terms of both predictive accuracy
and uncertainty by evaluating its behaviour when it is only exposed to the
beginning of the conversation, finding that model accuracy improves and
uncertainty reduces as models are exposed to more information.
Related papers
- Evaluating Robustness of Dialogue Summarization Models in the Presence
of Naturally Occurring Variations [13.749495524988774]
We systematically investigate the impact of real-life variations on state-of-the-art dialogue summarization models.
We introduce two types of perturbations: utterance-level perturbations that modify individual utterances with errors and language variations, and dialogue-level perturbations that add non-informative exchanges.
We find that both fine-tuned and instruction-tuned models are affected by input variations, with the latter being more susceptible.
arXiv Detail & Related papers (2023-11-15T05:11:43Z) - MindDial: Belief Dynamics Tracking with Theory-of-Mind Modeling for Situated Neural Dialogue Generation [62.44907105496227]
MindDial is a novel conversational framework that can generate situated free-form responses with theory-of-mind modeling.
We introduce an explicit mind module that can track the speaker's belief and the speaker's prediction of the listener's belief.
Our framework is applied to both prompting and fine-tuning-based models, and is evaluated across scenarios involving both common ground alignment and negotiation.
arXiv Detail & Related papers (2023-06-27T07:24:32Z) - Analyzing and Evaluating Faithfulness in Dialogue Summarization [67.07947198421421]
We first perform the fine-grained human analysis on the faithfulness of dialogue summaries and observe that over 35% of generated summaries are faithfully inconsistent respective the source dialogues.
We present a new model-level faithfulness evaluation method. It examines generation models with multi-choice questions created by rule-based transformations.
arXiv Detail & Related papers (2022-10-21T07:22:43Z) - CONFIT: Toward Faithful Dialogue Summarization with
Linguistically-Informed Contrastive Fine-tuning [5.389540975316299]
Factual inconsistencies in generated summaries severely limit the practical applications of abstractive dialogue summarization.
We provide a typology of factual errors with annotation data to highlight the types of errors and move away from a binary understanding of factuality.
We propose a training strategy that improves the factual consistency and overall quality of summaries via a novel contrastive fine-tuning, called ConFiT.
arXiv Detail & Related papers (2021-12-16T09:08:40Z) - I like fish, especially dolphins: Addressing Contradictions in Dialogue
Modeling [104.09033240889106]
We introduce the DialoguE COntradiction DEtection task (DECODE) and a new conversational dataset containing both human-human and human-bot contradictory dialogues.
We then compare a structured utterance-based approach of using pre-trained Transformer models for contradiction detection with the typical unstructured approach.
arXiv Detail & Related papers (2020-12-24T18:47:49Z) - A Closer Look at Linguistic Knowledge in Masked Language Models: The
Case of Relative Clauses in American English [17.993417004424078]
Transformer-based language models achieve high performance on various tasks, but we still lack understanding of the kind of linguistic knowledge they learn and rely on.
We evaluate three models (BERT, RoBERTa, and ALBERT) testing their grammatical and semantic knowledge by sentence-level probing, diagnostic cases, and masked prediction tasks.
arXiv Detail & Related papers (2020-11-02T13:25:39Z) - Are Some Words Worth More than Others? [3.5598388686985354]
We propose two new intrinsic evaluation measures within the framework of a simple word prediction task.
We evaluate several commonly-used large English language models using our proposed metrics.
arXiv Detail & Related papers (2020-10-12T23:12:11Z) - Ranking Enhanced Dialogue Generation [77.8321855074999]
How to effectively utilize the dialogue history is a crucial problem in multi-turn dialogue generation.
Previous works usually employ various neural network architectures to model the history.
This paper proposes a Ranking Enhanced Dialogue generation framework.
arXiv Detail & Related papers (2020-08-13T01:49:56Z) - Mechanisms for Handling Nested Dependencies in Neural-Network Language
Models and Humans [75.15855405318855]
We studied whether a modern artificial neural network trained with "deep learning" methods mimics a central aspect of human sentence processing.
Although the network was solely trained to predict the next word in a large corpus, analysis showed the emergence of specialized units that successfully handled local and long-distance syntactic agreement.
We tested the model's predictions in a behavioral experiment where humans detected violations in number agreement in sentences with systematic variations in the singular/plural status of multiple nouns.
arXiv Detail & Related papers (2020-06-19T12:00:05Z) - Improving Factual Consistency Between a Response and Persona Facts [64.30785349238619]
Neural models for response generation produce responses that are semantically plausible but not necessarily factually consistent with facts describing the speaker's persona.
We propose to fine-tune these models by reinforcement learning and an efficient reward function that explicitly captures the consistency between a response and persona facts as well as semantic plausibility.
arXiv Detail & Related papers (2020-04-30T18:08:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.