Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory
to Learning Algorithms
- URL: http://arxiv.org/abs/2101.10943v2
- Date: Thu, 25 Feb 2021 13:36:14 GMT
- Title: Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory
to Learning Algorithms
- Authors: Alicia Curth and Mihaela van der Schaar
- Abstract summary: We analyze four broad meta-learning strategies which rely on plug-in estimation and pseudo-outcome regression.
We highlight how this theoretical reasoning can be used to guide principled algorithm design and translate our analyses into practice.
- Score: 91.3755431537592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The need to evaluate treatment effectiveness is ubiquitous in most of
empirical science, and interest in flexibly investigating effect heterogeneity
is growing rapidly. To do so, a multitude of model-agnostic, nonparametric
meta-learners have been proposed in recent years. Such learners decompose the
treatment effect estimation problem into separate sub-problems, each solvable
using standard supervised learning methods. Choosing between different
meta-learners in a data-driven manner is difficult, as it requires access to
counterfactual information. Therefore, with the ultimate goal of building
better understanding of the conditions under which some learners can be
expected to perform better than others a priori, we theoretically analyze four
broad meta-learning strategies which rely on plug-in estimation and
pseudo-outcome regression. We highlight how this theoretical reasoning can be
used to guide principled algorithm design and translate our analyses into
practice by considering a variety of neural network architectures as
base-learners for the discussed meta-learning strategies. In a simulation
study, we showcase the relative strengths of the learners under different
data-generating processes.
Related papers
- A Kernel Perspective on Distillation-based Collaborative Learning [8.971234046933349]
We propose a nonparametric collaborative learning algorithm that does not directly share local data or models in statistically heterogeneous environments.
Inspired by our theoretical results, we also propose a practical distillation-based collaborative learning algorithm based on neural network architecture.
arXiv Detail & Related papers (2024-10-23T06:40:13Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
Recent research has begun to approach large language models (LLMs) unlearning via gradient ascent (GA)
Despite their simplicity and efficiency, we suggest that GA-based methods face the propensity towards excessive unlearning.
We propose several controlling methods that can regulate the extent of excessive unlearning.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Applying statistical learning theory to deep learning [21.24637996678039]
The goal of these lectures is to provide an overview of some of the main questions that arise when attempting to understand deep learning.
We discuss implicit bias in the context of benign overfitting.
We provide a detailed study of the implicit bias of gradient descent on linear diagonal networks for various regression tasks.
arXiv Detail & Related papers (2023-11-26T20:00:53Z) - A Unified Generalization Analysis of Re-Weighting and Logit-Adjustment
for Imbalanced Learning [129.63326990812234]
We propose a technique named data-dependent contraction to capture how modified losses handle different classes.
On top of this technique, a fine-grained generalization bound is established for imbalanced learning, which helps reveal the mystery of re-weighting and logit-adjustment.
arXiv Detail & Related papers (2023-10-07T09:15:08Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Enhancing ensemble learning and transfer learning in multimodal data
analysis by adaptive dimensionality reduction [10.646114896709717]
In multimodal data analysis, not all observations would show the same level of reliability or information quality.
We propose an adaptive approach for dimensionality reduction to overcome this issue.
We test our approach on multimodal datasets acquired in diverse research fields.
arXiv Detail & Related papers (2021-05-08T11:53:12Z) - On Data Efficiency of Meta-learning [17.739215706060605]
We study the often overlooked aspect of the modern meta-learning algorithms -- their data efficiency.
We introduce a new simple framework for evaluating meta-learning methods under a limit on the available supervision.
We propose active meta-learning, which incorporates active data selection into learning-to-learn, leading to better performance of all methods in the limited supervision regime.
arXiv Detail & Related papers (2021-01-30T01:44:12Z) - A Comparison of Methods for Treatment Assignment with an Application to
Playlist Generation [13.804332504576301]
We group the various methods proposed in the literature into three general classes of algorithms (or metalearners)
We show analytically and empirically that optimizing for the prediction of outcomes or causal effects is not the same as optimizing for treatment assignments.
This is the first comparison of the three different metalearners on a real-world application at scale.
arXiv Detail & Related papers (2020-04-24T04:56:15Z) - Provable Meta-Learning of Linear Representations [114.656572506859]
We provide fast, sample-efficient algorithms to address the dual challenges of learning a common set of features from multiple, related tasks, and transferring this knowledge to new, unseen tasks.
We also provide information-theoretic lower bounds on the sample complexity of learning these linear features.
arXiv Detail & Related papers (2020-02-26T18:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.