Multilingual and cross-lingual document classification: A meta-learning
approach
- URL: http://arxiv.org/abs/2101.11302v1
- Date: Wed, 27 Jan 2021 10:22:56 GMT
- Title: Multilingual and cross-lingual document classification: A meta-learning
approach
- Authors: Niels van der Heijden, Helen Yannakoudakis, Pushkar Mishra, Ekaterina
Shutova
- Abstract summary: We propose a meta-learning approach to document classification in limited-resource setting.
We show effectiveness in two settings: few-shot, cross-lingual adaptation to previously unseen languages and multilingual joint training.
- Score: 24.66829920826166
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The great majority of languages in the world are considered under-resourced
for the successful application of deep learning methods. In this work, we
propose a meta-learning approach to document classification in limited-resource
setting and demonstrate its effectiveness in two different settings: few-shot,
cross-lingual adaptation to previously unseen languages; and multilingual joint
training when limited target-language data is available during training. We
conduct a systematic comparison of several meta-learning methods, investigate
multiple settings in terms of data availability and show that meta-learning
thrives in settings with a heterogeneous task distribution. We propose a
simple, yet effective adjustment to existing meta-learning methods which allows
for better and more stable learning, and set a new state of the art on several
languages while performing on-par on others, using only a small amount of
labeled data.
Related papers
- MetaXLR -- Mixed Language Meta Representation Transformation for
Low-resource Cross-lingual Learning based on Multi-Armed Bandit [0.0]
We propose an enhanced approach which uses multiple source languages chosen in a data driven manner.
We achieve state of the art results on the NER task for the extremely low resource languages while using the same amount of data.
arXiv Detail & Related papers (2023-05-31T18:22:33Z) - On Efficiently Acquiring Annotations for Multilingual Models [12.304046317362792]
We show that the strategy of joint learning across multiple languages using a single model performs substantially better than the aforementioned alternatives.
We show that this simple approach enables the model to be data efficient by allowing it to arbitrate its annotation budget to query languages it is less certain on.
arXiv Detail & Related papers (2022-04-03T07:42:13Z) - Exploring Teacher-Student Learning Approach for Multi-lingual
Speech-to-Intent Classification [73.5497360800395]
We develop an end-to-end system that supports multiple languages.
We exploit knowledge from a pre-trained multi-lingual natural language processing model.
arXiv Detail & Related papers (2021-09-28T04:43:11Z) - Meta Navigator: Search for a Good Adaptation Policy for Few-shot
Learning [113.05118113697111]
Few-shot learning aims to adapt knowledge learned from previous tasks to novel tasks with only a limited amount of labeled data.
Research literature on few-shot learning exhibits great diversity, while different algorithms often excel at different few-shot learning scenarios.
We present Meta Navigator, a framework that attempts to solve the limitation in few-shot learning by seeking a higher-level strategy.
arXiv Detail & Related papers (2021-09-13T07:20:01Z) - MetaXL: Meta Representation Transformation for Low-resource
Cross-lingual Learning [91.5426763812547]
Cross-lingual transfer learning is one of the most effective methods for building functional NLP systems for low-resource languages.
We propose MetaXL, a meta-learning based framework that learns to transform representations judiciously from auxiliary languages to a target one.
arXiv Detail & Related papers (2021-04-16T06:15:52Z) - Multilingual Transfer Learning for Code-Switched Language and Speech
Neural Modeling [12.497781134446898]
We address the data scarcity and limitations of linguistic theory by proposing language-agnostic multi-task training methods.
First, we introduce a meta-learning-based approach, meta-transfer learning, in which information is judiciously extracted from high-resource monolingual speech data to the code-switching domain.
Second, we propose a novel multilingual meta-ems approach to effectively represent code-switching data by acquiring useful knowledge learned in other languages.
Third, we introduce multi-task learning to integrate syntactic information as a transfer learning strategy to a language model and learn where to code-switch.
arXiv Detail & Related papers (2021-04-13T14:49:26Z) - Meta-learning for fast cross-lingual adaptation in dependency parsing [16.716440467483096]
We apply model-agnostic meta-learning to the task of cross-lingual dependency parsing.
We find that meta-learning with pre-training can significantly improve upon the performance of language transfer.
arXiv Detail & Related papers (2021-04-10T11:10:16Z) - Are Multilingual Models Effective in Code-Switching? [57.78477547424949]
We study the effectiveness of multilingual language models to understand their capability and adaptability to the mixed-language setting.
Our findings suggest that pre-trained multilingual models do not necessarily guarantee high-quality representations on code-switching.
arXiv Detail & Related papers (2021-03-24T16:20:02Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
Massively multilingual language models such as multilingual BERT (mBERT) and XLM-R offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks.
Due to their limited capacity and large differences in pretraining data, there is a profound performance gap between resource-rich and resource-poor target languages.
We propose novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts.
arXiv Detail & Related papers (2020-12-31T11:37:28Z) - Meta-Transfer Learning for Code-Switched Speech Recognition [72.84247387728999]
We propose a new learning method, meta-transfer learning, to transfer learn on a code-switched speech recognition system in a low-resource setting.
Our model learns to recognize individual languages, and transfer them so as to better recognize mixed-language speech by conditioning the optimization on the code-switching data.
arXiv Detail & Related papers (2020-04-29T14:27:19Z) - Zero-Shot Cross-Lingual Transfer with Meta Learning [45.29398184889296]
We consider the setting of training models on multiple languages at the same time, when little or no data is available for languages other than English.
We show that this challenging setup can be approached using meta-learning.
We experiment using standard supervised, zero-shot cross-lingual, as well as few-shot cross-lingual settings for different natural language understanding tasks.
arXiv Detail & Related papers (2020-03-05T16:07:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.