Machine learning for cloud resources management -- An overview
- URL: http://arxiv.org/abs/2101.11984v1
- Date: Thu, 28 Jan 2021 13:23:00 GMT
- Title: Machine learning for cloud resources management -- An overview
- Authors: V.N. Tsakalidou, P. Mitsou, G.A. Papakostas
- Abstract summary: This study explores the most important cloud resources management issues that have been combined with Machine Learning.
A big collection of researches is used to make sensible comparisons between the ML techniques that are used in the different kinds of cloud resources management fields.
We propose the most suitable ML model for each field.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Nowadays, an important topic that is considered a lot is how to integrate
Machine Learning(ML) to cloud resources management. In this study, our goal is
to explore the most important cloud resources management issues that have been
combined with ML and which present many promising results. To accomplish this,
we used chronological charts based on some keywords that we considered
important and tried to answer the question: is ML suitable for resources
management problems in the cloud? Furthermore, a short discussion takes place
on the data that are available and the open challenges on it. A big collection
of researches is used to make sensible comparisons between the ML techniques
that are used in the different kinds of cloud resources management fields and
we propose the most suitable ML model for each field. 1
Related papers
- The Synergy between Data and Multi-Modal Large Language Models: A Survey from Co-Development Perspective [53.48484062444108]
We find that the development of models and data is not two separate paths but rather interconnected.
On the one hand, vaster and higher-quality data contribute to better performance of MLLMs; on the other hand, MLLMs can facilitate the development of data.
To promote the data-model co-development for MLLM community, we systematically review existing works related to MLLMs from the data-model co-development perspective.
arXiv Detail & Related papers (2024-07-11T15:08:11Z) - Understanding Information Storage and Transfer in Multi-modal Large Language Models [51.20840103605018]
We study how Multi-modal Large Language Models process information in a factual visual question answering task.
Key findings show that these MLLMs rely on self-attention blocks in much earlier layers for information storage.
We introduce MultEdit, a model-editing algorithm that can correct errors and insert new long-tailed information into MLLMs.
arXiv Detail & Related papers (2024-06-06T16:35:36Z) - Efficient Multimodal Large Language Models: A Survey [60.7614299984182]
Multimodal Large Language Models (MLLMs) have demonstrated remarkable performance in tasks such as visual question answering, visual understanding and reasoning.
The extensive model size and high training and inference costs have hindered the widespread application of MLLMs in academia and industry.
This survey provides a comprehensive and systematic review of the current state of efficient MLLMs.
arXiv Detail & Related papers (2024-05-17T12:37:10Z) - Holistic Autonomous Driving Understanding by Bird's-Eye-View Injected
Multi-Modal Large Models [76.99140362751787]
We present NuInstruct, a novel dataset with 91K multi-view video-QA pairs across 17 subtasks.
We also present BEV-InMLLM, an end-to-end method for efficiently deriving instruction-aware Bird's-Eye-View features.
arXiv Detail & Related papers (2024-01-02T01:54:22Z) - CloudEval-YAML: A Practical Benchmark for Cloud Configuration Generation [9.320732264679238]
We present CloudEval-YAML, a practical benchmark for cloud configuration generation.
The dataset consists of hand-written problems with unit tests targeting practical scenarios.
The dataset consists of 1011 problems that take more than 1200 human hours to complete.
arXiv Detail & Related papers (2023-11-10T01:49:57Z) - MME: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models [73.86954509967416]
Multimodal Large Language Model (MLLM) relies on the powerful LLM to perform multimodal tasks.
This paper presents the first comprehensive MLLM Evaluation benchmark MME.
It measures both perception and cognition abilities on a total of 14 subtasks.
arXiv Detail & Related papers (2023-06-23T09:22:36Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z) - A Survey on Machine Learning for Geo-Distributed Cloud Data Center
Management [4.226118870861363]
Cloud service providers have been distributing data centers globally to reduce operating costs and improve quality of service.
Such large scale and complex orchestration of software workload and hardware resources remains a difficult problem to solve efficiently.
We review the state-of-the-art Machine Learning techniques for the cloud data center management problem.
arXiv Detail & Related papers (2022-05-17T03:14:54Z) - The MIT Supercloud Dataset [3.375826083518709]
We introduce the MIT Supercloud dataset which aims to foster innovative AI/ML approaches to the analysis of large scale HPC and datacenter/cloud operations.
We provide detailed monitoring logs from the MIT Supercloud system, which include CPU and GPU usage by jobs, memory usage, file system logs, and physical monitoring data.
This paper discusses the details of the dataset, collection methodology, data availability, and discusses potential challenge problems being developed using this data.
arXiv Detail & Related papers (2021-08-04T13:06:17Z) - Machine Learning (ML)-Centric Resource Management in Cloud Computing: A
Review and Future Directions [22.779373079539713]
Infrastructure as a Service (I) is one of the most important and rapidly growing fields.
One of the most important aspects of cloud computing for I is resource management.
Machine learning is being used to handle a variety of resource management tasks.
arXiv Detail & Related papers (2021-05-09T08:03:58Z) - Artificial Intelligence (AI)-Centric Management of Resources in Modern
Distributed Computing Systems [22.550075095184514]
Cloud Data Centres (DCS) are large scale, complex, heterogeneous, and distributed across multiple networks and geographical boundaries.
The Internet of Things (IoT)-driven applications are producing a huge amount of data that requires real-time processing and fast response.
Existing Resource Management Systems (RMS) rely on either static or solutions inadequate for such composite and dynamic systems.
arXiv Detail & Related papers (2020-06-09T06:54:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.