Scalable Voltage Control using Structure-Driven Hierarchical Deep
Reinforcement Learning
- URL: http://arxiv.org/abs/2102.00077v1
- Date: Fri, 29 Jan 2021 21:30:59 GMT
- Title: Scalable Voltage Control using Structure-Driven Hierarchical Deep
Reinforcement Learning
- Authors: Sayak Mukherjee, Renke Huang, Qiuhua Huang, Thanh Long Vu, Tianzhixi
Yin
- Abstract summary: This paper presents a novel hierarchical deep reinforcement learning (DRL) based design for the voltage control of power grids.
We exploit the area-wise division structure of the power system to propose a hierarchical DRL design that can be scaled to the larger grid models.
We train area-wise decentralized RL agents to compute lower-level policies for the individual areas, and concurrently train a higher-level DRL agent that uses the updates of the lower-level policies to efficiently coordinate the control actions taken by the lower-level agents.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel hierarchical deep reinforcement learning (DRL)
based design for the voltage control of power grids. DRL agents are trained for
fast, and adaptive selection of control actions such that the voltage recovery
criterion can be met following disturbances. Existing voltage control
techniques suffer from the issues of speed of operation, optimal coordination
between different locations, and scalability. We exploit the area-wise division
structure of the power system to propose a hierarchical DRL design that can be
scaled to the larger grid models. We employ an enhanced augmented random search
algorithm that is tailored for the voltage control problem in a two-level
architecture. We train area-wise decentralized RL agents to compute lower-level
policies for the individual areas, and concurrently train a higher-level DRL
agent that uses the updates of the lower-level policies to efficiently
coordinate the control actions taken by the lower-level agents. Numerical
experiments on the IEEE benchmark 39-bus model with 3 areas demonstrate the
advantages and various intricacies of the proposed hierarchical approach.
Related papers
- Function Approximation for Reinforcement Learning Controller for Energy from Spread Waves [69.9104427437916]
Multi-generator Wave Energy Converters (WEC) must handle multiple simultaneous waves coming from different directions called spread waves.
These complex devices need controllers with multiple objectives of energy capture efficiency, reduction of structural stress to limit maintenance, and proactive protection against high waves.
In this paper, we explore different function approximations for the policy and critic networks in modeling the sequential nature of the system dynamics.
arXiv Detail & Related papers (2024-04-17T02:04:10Z) - Hierarchical Reinforcement Learning for Power Network Topology Control [22.203574989348773]
Learning in high-dimensional action spaces is a key challenge in applying reinforcement learning to real-world systems.
In this paper, we study the possibility of controlling power networks using RL methods.
arXiv Detail & Related papers (2023-11-03T12:33:00Z) - Rethinking Decision Transformer via Hierarchical Reinforcement Learning [54.3596066989024]
Decision Transformer (DT) is an innovative algorithm leveraging recent advances of the transformer architecture in reinforcement learning (RL)
We introduce a general sequence modeling framework for studying sequential decision making through the lens of Hierarchical RL.
We show DT emerges as a special case of this framework with certain choices of high-level and low-level policies, and discuss the potential failure of these choices.
arXiv Detail & Related papers (2023-11-01T03:32:13Z) - Distributed-Training-and-Execution Multi-Agent Reinforcement Learning
for Power Control in HetNet [48.96004919910818]
We propose a multi-agent deep reinforcement learning (MADRL) based power control scheme for the HetNet.
To promote cooperation among agents, we develop a penalty-based Q learning (PQL) algorithm for MADRL systems.
In this way, an agent's policy can be learned by other agents more easily, resulting in a more efficient collaboration process.
arXiv Detail & Related papers (2022-12-15T17:01:56Z) - Stabilizing Voltage in Power Distribution Networks via Multi-Agent
Reinforcement Learning with Transformer [128.19212716007794]
We propose a Transformer-based Multi-Agent Actor-Critic framework (T-MAAC) to stabilize voltage in power distribution networks.
In addition, we adopt a novel auxiliary-task training process tailored to the voltage control task, which improves the sample efficiency.
arXiv Detail & Related papers (2022-06-08T07:48:42Z) - Curriculum Based Reinforcement Learning of Grid Topology Controllers to
Prevent Thermal Cascading [0.19116784879310028]
This paper describes how domain knowledge of power system operators can be integrated into reinforcement learning frameworks.
A curriculum-based approach with reward tuning is incorporated into the training procedure by modifying the environment.
A parallel training approach on multiple scenarios is employed to avoid biasing the agent to a few scenarios and make it robust to the natural variability in grid operations.
arXiv Detail & Related papers (2021-12-18T20:32:05Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
We show that several state-of-the-art RL agents proposed for power system control are vulnerable to adversarial attacks.
Specifically, we use an adversary Markov Decision Process to learn an attack policy, and demonstrate the potency of our attack.
We propose to use adversarial training to increase the robustness of RL agent against attacks and avoid infeasible operational decisions.
arXiv Detail & Related papers (2021-10-18T00:50:34Z) - Learning and Fast Adaptation for Grid Emergency Control via Deep Meta
Reinforcement Learning [22.58070790887177]
Power systems are undergoing a significant transformation with more uncertainties, less inertia and closer to operation limits.
There is an imperative need to enhance grid emergency control to maintain system reliability and security.
Great progress has been made in developing deep reinforcement learning (DRL) based grid control solutions in recent years.
Existing DRL-based solutions have two main limitations: 1) they cannot handle well with a wide range of grid operation conditions, system parameters, and contingencies; 2) they generally lack the ability to fast adapt to new grid operation conditions, system parameters, and contingencies, limiting their applicability for real-world applications.
arXiv Detail & Related papers (2021-01-13T19:45:59Z) - Transfer Deep Reinforcement Learning-enabled Energy Management Strategy
for Hybrid Tracked Vehicle [8.327437591702163]
This paper proposes an adaptive energy management strategy for hybrid electric vehicles by combining deep reinforcement learning (DRL) and transfer learning (TL)
It aims to address the defect of DRL in tedious training time.
The founded DRL and TL-enabled control policy is capable of enhancing energy efficiency and improving system performance.
arXiv Detail & Related papers (2020-07-16T23:39:34Z) - Distributed Voltage Regulation of Active Distribution System Based on
Enhanced Multi-agent Deep Reinforcement Learning [9.7314654861242]
This paper proposes a data-driven distributed voltage control approach based on the spectrum clustering and the enhanced multi-agent deep reinforcement learning (MADRL) algorithm.
The proposed method can significantly reduce the requirements of communications and knowledge of system parameters.
It also effectively deals with uncertainties and can provide online coordinated control based on the latest local information.
arXiv Detail & Related papers (2020-05-31T15:48:27Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.