Linear Frequency Principle Model to Understand the Absence of
Overfitting in Neural Networks
- URL: http://arxiv.org/abs/2102.00200v1
- Date: Sat, 30 Jan 2021 10:11:37 GMT
- Title: Linear Frequency Principle Model to Understand the Absence of
Overfitting in Neural Networks
- Authors: Yaoyu Zhang, Tao Luo, Zheng Ma, and Zhi-Qin John Xu
- Abstract summary: We show that low frequency dominance of target functions is the key condition for the non-overfitting of NNs.
Through an ideal two-layer NN, we unravel how detailed microscopic NN training dynamics statistically gives rise to a LFP model with quantitative prediction power.
- Score: 4.86119220344659
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Why heavily parameterized neural networks (NNs) do not overfit the data is an
important long standing open question. We propose a phenomenological model of
the NN training to explain this non-overfitting puzzle. Our linear frequency
principle (LFP) model accounts for a key dynamical feature of NNs: they learn
low frequencies first, irrespective of microscopic details. Theory based on our
LFP model shows that low frequency dominance of target functions is the key
condition for the non-overfitting of NNs and is verified by experiments.
Furthermore, through an ideal two-layer NN, we unravel how detailed microscopic
NN training dynamics statistically gives rise to a LFP model with quantitative
prediction power.
Related papers
- Understanding the dynamics of the frequency bias in neural networks [0.0]
Recent works have shown that traditional Neural Network (NN) architectures display a marked frequency bias in the learning process.
We develop a partial differential equation (PDE) that unravels the frequency dynamics of the error for a 2-layer NN.
We empirically show that the same principle extends to multi-layer NNs.
arXiv Detail & Related papers (2024-05-23T18:09:16Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
We show that when the data distribution is well-separated, DNNs can achieve Bayes-optimal test error for classification.
Our results indicate that interpolating with smoother functions leads to better generalization.
arXiv Detail & Related papers (2023-05-30T19:37:44Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
The study on NTK has been devoted to typical neural network architectures, but is incomplete for neural networks with Hadamard products (NNs-Hp)
In this work, we derive the finite-width-K formulation for a special class of NNs-Hp, i.e., neural networks.
We prove their equivalence to the kernel regression predictor with the associated NTK, which expands the application scope of NTK.
arXiv Detail & Related papers (2022-09-16T06:36:06Z) - The Spectral Bias of Polynomial Neural Networks [63.27903166253743]
Polynomial neural networks (PNNs) have been shown to be particularly effective at image generation and face recognition, where high-frequency information is critical.
Previous studies have revealed that neural networks demonstrate a $textitspectral bias$ towards low-frequency functions, which yields faster learning of low-frequency components during training.
Inspired by such studies, we conduct a spectral analysis of the Tangent Kernel (NTK) of PNNs.
We find that the $Pi$-Net family, i.e., a recently proposed parametrization of PNNs, speeds up the
arXiv Detail & Related papers (2022-02-27T23:12:43Z) - On the exact computation of linear frequency principle dynamics and its
generalization [6.380166265263755]
Recent works show an intriguing phenomenon of Frequency Principle (F-Principle) that fits the target function from low to high frequency during the training.
In this paper, we derive the exact differential equation, namely Linear Frequency-Principle (LFP) model, governing the evolution of NN output function in frequency domain.
arXiv Detail & Related papers (2020-10-15T15:17:21Z) - How Neural Networks Extrapolate: From Feedforward to Graph Neural
Networks [80.55378250013496]
We study how neural networks trained by gradient descent extrapolate what they learn outside the support of the training distribution.
Graph Neural Networks (GNNs) have shown some success in more complex tasks.
arXiv Detail & Related papers (2020-09-24T17:48:59Z) - Entropy-Based Modeling for Estimating Soft Errors Impact on Binarized
Neural Network Inference [2.249916681499244]
We present the relatively-accurate statistical models to delineate the impact of both undertaken single-event upset (SEU) and multi-bit upset (MBU) across layers and per each layer of the selected convolution neural network.
These models can be used for evaluating the error-resiliency magnitude of NN topology before adopting them in the safety-critical applications.
arXiv Detail & Related papers (2020-04-10T16:10:24Z) - Phase Detection with Neural Networks: Interpreting the Black Box [58.720142291102135]
Neural networks (NNs) usually hinder any insight into the reasoning behind their predictions.
We demonstrate how influence functions can unravel the black box of NN when trained to predict the phases of the one-dimensional extended spinless Fermi-Hubbard model at half-filling.
arXiv Detail & Related papers (2020-04-09T17:45:45Z) - Frequency Principle: Fourier Analysis Sheds Light on Deep Neural Networks [9.23835409289015]
We study the training process of Deep Neural Networks (DNNs) from the Fourier analysis perspective.
We demonstrate a very universal Frequency Principle (F-Principle) -- DNNs often fit target functions from low to high frequencies.
arXiv Detail & Related papers (2019-01-19T13:37:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.