ShufText: A Simple Black Box Approach to Evaluate the Fragility of Text
Classification Models
- URL: http://arxiv.org/abs/2102.00238v1
- Date: Sat, 30 Jan 2021 15:18:35 GMT
- Title: ShufText: A Simple Black Box Approach to Evaluate the Fragility of Text
Classification Models
- Authors: Rutuja Taware, Shraddha Varat, Gaurav Salunke, Chaitanya Gawande,
Geetanjali Kale, Rahul Khengare, Raviraj Joshi
- Abstract summary: Deep learning approaches based on CNN, LSTM, and Transformers have been the de facto approach for text classification.
We show that these systems are over-reliant on the important words present in the text that are useful for classification.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text classification is the most basic natural language processing task. It
has a wide range of applications ranging from sentiment analysis to topic
classification. Recently, deep learning approaches based on CNN, LSTM, and
Transformers have been the de facto approach for text classification. In this
work, we highlight a common issue associated with these approaches. We show
that these systems are over-reliant on the important words present in the text
that are useful for classification. With limited training data and
discriminative training strategy, these approaches tend to ignore the semantic
meaning of the sentence and rather just focus on keywords or important n-grams.
We propose a simple black box technique ShutText to present the shortcomings of
the model and identify the over-reliance of the model on keywords. This
involves randomly shuffling the words in a sentence and evaluating the
classification accuracy. We see that on common text classification datasets
there is very little effect of shuffling and with high probability these models
predict the original class. We also evaluate the effect of language model
pretraining on these models and try to answer questions around model robustness
to out of domain sentences. We show that simple models based on CNN or LSTM as
well as complex models like BERT are questionable in terms of their syntactic
and semantic understanding.
Related papers
- Detecting Statements in Text: A Domain-Agnostic Few-Shot Solution [1.3654846342364308]
State-of-the-art approaches usually involve fine-tuning models on large annotated datasets, which are costly to produce.
We propose and release a qualitative and versatile few-shot learning methodology as a common paradigm for any claim-based textual classification task.
We illustrate this methodology in the context of three tasks: climate change contrarianism detection, topic/stance classification and depression-relates symptoms detection.
arXiv Detail & Related papers (2024-05-09T12:03:38Z) - Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
Recent foundational language models have shown state-of-the-art performance in many NLP tasks in zero- and few-shot settings.
An advantage of these models over more standard approaches is the ability to understand instructions written in natural language (prompts)
This makes them suitable for addressing text classification problems for domains with limited amounts of annotated instances.
arXiv Detail & Related papers (2024-03-26T12:47:39Z) - Zero-Shot Text Classification via Self-Supervised Tuning [46.9902502503747]
We propose a new paradigm based on self-supervised learning to solve zero-shot text classification tasks.
tuning the language models with unlabeled data, called self-supervised tuning.
Our model outperforms the state-of-the-art baselines on 7 out of 10 tasks.
arXiv Detail & Related papers (2023-05-19T05:47:33Z) - Like a Good Nearest Neighbor: Practical Content Moderation and Text
Classification [66.02091763340094]
Like a Good Nearest Neighbor (LaGoNN) is a modification to SetFit that introduces no learnable parameters but alters input text with information from its nearest neighbor.
LaGoNN is effective at flagging undesirable content and text classification, and improves the performance of SetFit.
arXiv Detail & Related papers (2023-02-17T15:43:29Z) - Text2Model: Text-based Model Induction for Zero-shot Image Classification [38.704831945753284]
We address the challenge of building task-agnostic classifiers using only text descriptions.
We generate zero-shot classifiers using a hypernetwork that receives class descriptions and outputs a multi-class model.
We evaluate this approach in a series of zero-shot classification tasks, for image, point-cloud, and action recognition, using a range of text descriptions.
arXiv Detail & Related papers (2022-10-27T05:19:55Z) - Revisiting Self-Training for Few-Shot Learning of Language Model [61.173976954360334]
Unlabeled data carry rich task-relevant information, they are proven useful for few-shot learning of language model.
In this work, we revisit the self-training technique for language model fine-tuning and present a state-of-the-art prompt-based few-shot learner, SFLM.
arXiv Detail & Related papers (2021-10-04T08:51:36Z) - Experiments with adversarial attacks on text genres [0.0]
Neural models based on pre-trained transformers, such as BERT or XLM-RoBERTa, demonstrate SOTA results in many NLP tasks.
We show that embedding-based algorithms which can replace some of the most significant'' words with words similar to them, have the ability to influence model predictions in a significant proportion of cases.
arXiv Detail & Related papers (2021-07-05T19:37:59Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Short texts published on Twitter have earned significant attention as a rich source of information.
Their inherent characteristics, such as the informal, and noisy linguistic style, remain challenging to many natural language processing (NLP) tasks.
This study fulfils an assessment of existing language models in distinguishing the sentiment expressed in tweets by using a rich collection of 22 datasets.
arXiv Detail & Related papers (2021-05-29T21:05:28Z) - MASKER: Masked Keyword Regularization for Reliable Text Classification [73.90326322794803]
We propose a fine-tuning method, coined masked keyword regularization (MASKER), that facilitates context-based prediction.
MASKER regularizes the model to reconstruct the keywords from the rest of the words and make low-confidence predictions without enough context.
We demonstrate that MASKER improves OOD detection and cross-domain generalization without degrading classification accuracy.
arXiv Detail & Related papers (2020-12-17T04:54:16Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
A language model's vocabulary$-$typically selected before training and permanently fixed later$-$affects its size.
We propose a fully compositional output embedding layer for language models.
To our knowledge, the result is the first word-level language model with a size that does not depend on the training vocabulary.
arXiv Detail & Related papers (2020-09-24T07:21:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.