Learning Interaction Kernels for Agent Systems on Riemannian Manifolds
- URL: http://arxiv.org/abs/2102.00327v1
- Date: Sat, 30 Jan 2021 22:15:50 GMT
- Title: Learning Interaction Kernels for Agent Systems on Riemannian Manifolds
- Authors: Mauro Maggioni, Jason Miller, Hongda Qui, Ming Zhong
- Abstract summary: We generalize the theory and algorithms in [1] introduced in the Euclidean setting.
We show that our estimators converge at a rate that is independent of the dimension of the manifold.
We demonstrate highly accurate performance of the learning algorithm on three classical first order interacting systems.
- Score: 9.588842746998486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interacting agent and particle systems are extensively used to model complex
phenomena in science and engineering. We consider the problem of learning
interaction kernels in these dynamical systems constrained to evolve on
Riemannian manifolds from given trajectory data. Our approach generalizes the
theory and algorithms in [1] introduced in the Euclidean setting. The models we
consider are based on interaction kernels depending on pairwise Riemannian
distances between agents, with agents interacting locally along the direction
of the shortest geodesic connecting them. We show that our estimators converge
at a rate that is independent of the dimension of the manifold, and derive
bounds on the trajectory estimation error, on the manifold, between the
observed and estimated dynamics. We demonstrate highly accurate performance of
the learning algorithm on three classical first order interacting systems,
Opinion Dynamics, Lennard-Jones Dynamics, and a Predator-Swarm system, with
each system constrained on two prototypical manifolds, the $2$-dimensional
sphere and the Poincar\'e disk model of hyperbolic space.
[1] F. Lu, M. Zhong, S. Tang, M. Maggioni, Nonparametric Inference of
Interaction Laws in Systems of Agents from Trajectory Data, PNAS, 116 (2019),
pp. 14424 - 14433.
Related papers
- Geometric Trajectory Diffusion Models [58.853975433383326]
Generative models have shown great promise in generating 3D geometric systems.
Existing approaches only operate on static structures, neglecting the fact that physical systems are always dynamic in nature.
We propose geometric trajectory diffusion models (GeoTDM), the first diffusion model for modeling the temporal distribution of 3D geometric trajectories.
arXiv Detail & Related papers (2024-10-16T20:36:41Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - Data-Driven Model Selections of Second-Order Particle Dynamics via
Integrating Gaussian Processes with Low-Dimensional Interacting Structures [0.9821874476902972]
We focus on the data-driven discovery of a general second-order particle-based model.
We present applications to modeling two real-world fish motion datasets.
arXiv Detail & Related papers (2023-11-01T23:45:15Z) - Inferring Relational Potentials in Interacting Systems [56.498417950856904]
We propose Neural Interaction Inference with Potentials (NIIP) as an alternative approach to discover such interactions.
NIIP assigns low energy to the subset of trajectories which respect the relational constraints observed.
It allows trajectory manipulation, such as interchanging interaction types across separately trained models, as well as trajectory forecasting.
arXiv Detail & Related papers (2023-10-23T00:44:17Z) - Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes [57.396578974401734]
We introduce a principled framework for building a generative diffusion process on general manifold.
Instead of following the denoising approach of previous diffusion models, we construct a diffusion process using a mixture of bridge processes.
We develop a geometric understanding of the mixture process, deriving the drift as a weighted mean of tangent directions to the data points.
arXiv Detail & Related papers (2023-10-11T06:04:40Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Random Feature Models for Learning Interacting Dynamical Systems [2.563639452716634]
We consider the problem of constructing a data-based approximation of the interacting forces directly from noisy observations of the paths of the agents in time.
The learned interaction kernels are then used to predict the agents behavior over a longer time interval.
In addition, imposing sparsity reduces the kernel evaluation cost which significantly lowers the simulation cost for forecasting the multi-agent systems.
arXiv Detail & Related papers (2022-12-11T20:09:36Z) - Learning Interaction Variables and Kernels from Observations of
Agent-Based Systems [14.240266845551488]
We propose a learning technique that, given observations of states and velocities along trajectories of agents, yields both the variables upon which the interaction kernel depends and the interaction kernel itself.
This yields an effective dimension reduction which avoids the curse of dimensionality from the high-dimensional observation data.
We demonstrate the learning capability of our method to a variety of first-order interacting systems.
arXiv Detail & Related papers (2022-08-04T16:31:01Z) - Data-driven discovery of interacting particle systems using Gaussian
processes [3.0938904602244346]
We study the data-driven discovery of distance-based interaction laws in second-order interacting particle systems.
We propose a learning approach that models the latent interaction kernel functions as Gaussian processes.
Numerical results on systems that exhibit different collective behaviors demonstrate efficient learning of our approach from scarce noisy trajectory data.
arXiv Detail & Related papers (2021-06-04T22:00:53Z) - Learning Theory for Inferring Interaction Kernels in Second-Order
Interacting Agent Systems [17.623937769189364]
We develop a complete learning theory which establishes strong consistency and optimal nonparametric min-max rates of convergence for the estimators.
The numerical algorithm presented to build the estimators is parallelizable, performs well on high-dimensional problems, and is demonstrated on complex dynamical systems.
arXiv Detail & Related papers (2020-10-08T02:07:53Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.