Virtual Microgrid Management via Software-defined Energy Network for
Electricity Sharing
- URL: http://arxiv.org/abs/2102.00656v2
- Date: Wed, 3 Mar 2021 02:48:05 GMT
- Title: Virtual Microgrid Management via Software-defined Energy Network for
Electricity Sharing
- Authors: Pedro H. J. Nardelli, Hafiz Majid Hussein, Arun Narayanan, Yongheng
Yang
- Abstract summary: This article proposes an approach to build a virtual microgrid operated as a software-defined energy network (SDEN)
The proposed cyber-physical system presumes that electrical energy is shared among its members and that the energy sharing is enabled in the cyber domain by handshakes inspired by resource allocation methods utilized in computer networks, wireless communications, and peer-to-peer Internet applications (e.g., BitTorrent)
This article concludes that the proposed solution generally complies with the existing regulations but has highly disruptive potential to organize a dominantly electrified energy system in the mid- to long-term.
- Score: 10.13696311830345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Digitalization has led to radical changes in the distribution of goods across
various sectors. The tendency is to move from traditional buyer-seller markets
to subscription-based on-demand "smart" matching platforms enabled by pervasive
ICTs. The driving force behind this lies in the fact that assets, which were
scarce in the past, are readily abundant, approaching a regime of zero marginal
costs. This is also becoming a reality in electrified energy systems due to the
substantial growth of distributed renewable energy sources such as solar and
wind; the increasing number of small-scale storage units such as batteries and
heat pumps; and the availability of flexible loads that enable demand-side
management. In this context, this article proposes a system architecture based
on a logical (cyber) association of spatially distributed (physical) elements
as an approach to build a virtual microgrid operated as a software-defined
energy network (SDEN) that is enabled by packetized energy management. The
proposed cyber-physical system presumes that electrical energy is shared among
its members and that the energy sharing is enabled in the cyber domain by
handshakes inspired by resource allocation methods utilized in computer
networks, wireless communications, and peer-to-peer Internet applications
(e.g., BitTorrent). The proposal has twofold benefits: (i) reducing the
complexity of current market-based solutions by removing unnecessary and costly
mediations and (ii) guaranteeing energy access to all virtual microgrid members
according to their individual needs. This article concludes that the proposed
solution generally complies with the existing regulations but has highly
disruptive potential to organize a dominantly electrified energy system in the
mid- to long-term, being a technical counterpart to the recently developed
social-oriented microgrid proposals.
Related papers
- Decentralized Energy Marketplace via NFTs and AI-based Agents [4.149465156450793]
The paper introduces an advanced Decentralized Energy Marketplace (DEM) integrating blockchain technology and artificial intelligence.
The proposed framework uses Non-Fungible Tokens (NFTs) to represent unique energy profiles in a transparent and secure trading environment.
A notable innovation is the use of smart contracts, ensuring high efficiency and integrity in energy transactions.
arXiv Detail & Related papers (2023-11-17T09:15:43Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Blockchain based Secure Energy Marketplace Scheme to Motivate Peer to Peer Microgrids [2.1074825621539617]
This paper proposes a scheme as a marketplace where users interact with each other to buy and sell energy at better rates.
Agreement between owner of resources and consumer is recorded on blockchain based smart contracts.
This paper also proposes an extra layer of security to leverage a shielded execution environment so that information of energy generated, utilized, and shared cannot be changed by consumers and third parties even if the system is compromised.
arXiv Detail & Related papers (2022-06-15T02:20:40Z) - Applications of blockchain and artificial intelligence technologies for
enabling prosumers in smart grids: A review [12.609078866334615]
Governments' net zero emission target aims at increasing the share of renewable energy sources.
This paper addresses how to incorporate the blockchain and AI in the smart grids for facilitating prosumers to participate in energy markets.
arXiv Detail & Related papers (2022-02-21T10:27:31Z) - Intelligent edge-based recommender system for internet of energy
applications [2.1874189959020423]
This paper presents the full integration of a proposed energy efficiency framework into the Home-Assistant platform using an edge-based architecture.
End-users can visualize their consumption patterns as well as ambient environmental data using the Home-Assistant user interface.
More notably, explainable energy-saving recommendations are delivered to end-users in the form of notifications via the mobile application.
arXiv Detail & Related papers (2021-11-25T23:28:14Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
An Intelligent IoT Environment (iIoTe) is comprised of heterogeneous devices that can collaboratively execute semi-autonomous IoT applications.
This paper provides a state-of-the-art overview of these technologies and illustrates their functionality and performance, with special attention to the tradeoff among resources, latency, privacy and energy consumption.
arXiv Detail & Related papers (2021-10-04T19:41:42Z) - A Multi-Agent Deep Reinforcement Learning Approach for a Distributed
Energy Marketplace in Smart Grids [58.666456917115056]
This paper presents a Reinforcement Learning based energy market for a prosumer dominated microgrid.
The proposed market model facilitates a real-time and demanddependent dynamic pricing environment, which reduces grid costs and improves the economic benefits for prosumers.
arXiv Detail & Related papers (2020-09-23T02:17:51Z) - A Hierarchical Approach to Multi-Energy Demand Response: From
Electricity to Multi-Energy Applications [1.5084441395740482]
This paper looks into an opportunity to control energy consumption of an aggregation of many residential, commercial and industrial consumers.
This ensemble control becomes a modern demand response contributor to the set of modeling tools for multi-energy infrastructure systems.
arXiv Detail & Related papers (2020-05-05T17:17:51Z) - Demand-Side Scheduling Based on Multi-Agent Deep Actor-Critic Learning
for Smart Grids [56.35173057183362]
We consider the problem of demand-side energy management, where each household is equipped with a smart meter that is able to schedule home appliances online.
The goal is to minimize the overall cost under a real-time pricing scheme.
We propose the formulation of a smart grid environment as a Markov game.
arXiv Detail & Related papers (2020-05-05T07:32:40Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.