Cloud Computing Concept and Roots
- URL: http://arxiv.org/abs/2102.00981v2
- Date: Tue, 9 Feb 2021 19:03:48 GMT
- Title: Cloud Computing Concept and Roots
- Authors: Bola Abimbola
- Abstract summary: Cloud computing is a particular implementation of distributed computing.
It inherited many properties of distributed computing such as scalability, reliability and distribution transparency.
New processing and storage resources can be added into the Cloud resource pool seamlessly.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cloud computing is a particular implementation of distributed computing. It
inherited many properties of distributed computing such as scalability,
reliability and distribution transparency. The transparency middle layer
abstracts the underlying platform away from the end user. Virtualization
technology is the foundation of Cloud computing. Virtual machine provides
abstraction of the physical server resources and securely isolates different
users in multi-tenant environment. To the Cloud services consumer, all the
computing power and resources are accessed through high speed internet access
by client platforms. This eliminates the cost to build and maintain local data
center. Resource pooling and rapid elasticity are the main characters of Cloud
computing. The scalability of Cloud computing comes from resources which can
span multiple data centers and geographic regions. There is virtually no
limitation on the amount of resources available from Cloud. New processing and
storage resources can be added into the Cloud resource pool seamlessly.
Related papers
- PVContext: Hybrid Context Model for Point Cloud Compression [61.24130634750288]
We propose PVContext, a hybrid context model for effective octree-based point cloud compression.
PVContext comprises two components with distinct modalities: the Voxel Context, which accurately represents local geometric information using voxels, and the Point Context, which efficiently preserves global shape information from point clouds.
arXiv Detail & Related papers (2024-09-19T12:47:35Z) - Dynamic Resource Allocation for Virtual Machine Migration Optimization using Machine Learning [17.423579410846695]
The paragraph is grammatically correct and logically coherent.
It emphasizes the need for efficient data access and storage, as well as the utilization of cloud computing migration technology to prevent additional time delays.
arXiv Detail & Related papers (2024-03-20T14:13:44Z) - Application of Machine Learning Optimization in Cloud Computing Resource
Scheduling and Management [18.462300407761873]
The scale of cloud computing in China has reached 209.1 billion yuan.
This paper proposes an innovative approach to solve complex problems in cloud computing resource scheduling and management.
arXiv Detail & Related papers (2024-02-27T05:14:27Z) - Computing in the Era of Large Generative Models: From Cloud-Native to
AI-Native [46.7766555589807]
We describe an AI-native computing paradigm that harnesses the power of both cloudnative technologies and advanced machine learning inference.
These joint efforts aim to optimize costs-of-goods-sold (COGS) and improve resource accessibility.
arXiv Detail & Related papers (2024-01-17T20:34:11Z) - Scaling Data Science Solutions with Semantics and Machine Learning:
Bosch Case [8.445414390004636]
SemCloud is a semantics-enhanced cloud system with semantic technologies and machine learning.
The system has been evaluated in industrial use case with millions of data, thousands of repeated runs, and domain users, showing promising results.
arXiv Detail & Related papers (2023-08-02T11:58:30Z) - How Can We Train Deep Learning Models Across Clouds and Continents? An Experimental Study [57.97785297481162]
We evaluate the cost and throughput implications of training in different zones, continents, and clouds for representative CV, NLP, and ASR models.
We show how leveraging spot pricing enables a new cost-efficient way to train models with multiple cheap instance, trumping both more centralized and powerful hardware and even on-demand cloud offerings at competitive prices.
arXiv Detail & Related papers (2023-06-05T18:17:37Z) - Managing Cold-start in The Serverless Cloud with Temporal Convolutional
Networks [0.0]
Serverless cloud is an innovative cloud service model that frees customers from most cloud management duties.
A big threat to the serverless cloud's performance is cold-start, which is when the time of provisioning the needed cloud resource to serve customers' requests incurs unacceptable costs to the service providers and/or the customers.
This paper proposes a novel low-coupling, high-cohesion ensemble policy that addresses the cold-start problem at infrastructure- and function-levels of the serverless cloud stack.
arXiv Detail & Related papers (2023-04-01T21:54:22Z) - Edge-Cloud Polarization and Collaboration: A Comprehensive Survey [61.05059817550049]
We conduct a systematic review for both cloud and edge AI.
We are the first to set up the collaborative learning mechanism for cloud and edge modeling.
We discuss potentials and practical experiences of some on-going advanced edge AI topics.
arXiv Detail & Related papers (2021-11-11T05:58:23Z) - Auto-Split: A General Framework of Collaborative Edge-Cloud AI [49.750972428032355]
This paper describes the techniques and engineering practice behind Auto-Split, an edge-cloud collaborative prototype of Huawei Cloud.
To the best of our knowledge, there is no existing industry product that provides the capability of Deep Neural Network (DNN) splitting.
arXiv Detail & Related papers (2021-08-30T08:03:29Z) - Machine Learning (ML)-Centric Resource Management in Cloud Computing: A
Review and Future Directions [22.779373079539713]
Infrastructure as a Service (I) is one of the most important and rapidly growing fields.
One of the most important aspects of cloud computing for I is resource management.
Machine learning is being used to handle a variety of resource management tasks.
arXiv Detail & Related papers (2021-05-09T08:03:58Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
This paper introduces a novel distributed architecture for deep-learning-as-a-service.
It is able to preserve the user sensitive data while providing Cloud-based machine and deep learning services.
arXiv Detail & Related papers (2020-03-30T15:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.