aura-net : robust segmentation of phase-contrast microscopy images with
few annotations
- URL: http://arxiv.org/abs/2102.01389v1
- Date: Tue, 2 Feb 2021 08:47:14 GMT
- Title: aura-net : robust segmentation of phase-contrast microscopy images with
few annotations
- Authors: Ethan Cohen and Virginie Uhlmann
- Abstract summary: AURA-net is a convolutional neural network (CNN) for the segmentation of phase-contrast microscopy images.
We show that AURA-net outperforms state-of-the-art alternatives in several small (less than 100images) datasets.
- Score: 2.1574781022415364
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present AURA-net, a convolutional neural network (CNN) for the
segmentation of phase-contrast microscopy images. AURA-net uses transfer
learning to accelerate training and Attention mechanisms to help the network
focus on relevant image features. In this way, it can be trained efficiently
with a very limited amount of annotations. Our network can thus be used to
automate the segmentation of datasets that are generally considered too small
for deep learning techniques. AURA-net also uses a loss inspired by active
contours that is well-adapted to the specificity of phase-contrast images,
further improving performance. We show that AURA-net outperforms
state-of-the-art alternatives in several small (less than 100images) datasets.
Related papers
- De-coupling and De-positioning Dense Self-supervised Learning [65.56679416475943]
Dense Self-Supervised Learning (SSL) methods address the limitations of using image-level feature representations when handling images with multiple objects.
We show that they suffer from coupling and positional bias, which arise from the receptive field increasing with layer depth and zero-padding.
We demonstrate the benefits of our method on COCO and on a new challenging benchmark, OpenImage-MINI, for object classification, semantic segmentation, and object detection.
arXiv Detail & Related papers (2023-03-29T18:07:25Z) - Increasing the Accuracy of a Neural Network Using Frequency Selective
Mesh-to-Grid Resampling [4.211128681972148]
We propose the use of keypoint frequency selective mesh-to-grid resampling (FSMR) for the processing of input data for neural networks.
We show that depending on the network architecture and classification task the application of FSMR during training aids learning process.
The classification accuracy can be increased by up to 4.31 percentage points for ResNet50 and the Oxflower17 dataset.
arXiv Detail & Related papers (2022-09-28T21:34:47Z) - EAA-Net: Rethinking the Autoencoder Architecture with Intra-class
Features for Medical Image Segmentation [4.777011444412729]
We propose a light-weight end-to-end segmentation framework based on multi-task learning, termed Edge Attention autoencoder Network (EAA-Net)
Our approach not only utilizes the segmentation network to obtain inter-class features, but also applies the reconstruction network to extract intra-class features among the foregrounds.
Experimental results show that our method performs well in medical image segmentation tasks.
arXiv Detail & Related papers (2022-08-19T07:42:55Z) - Visual Attention Network [90.0753726786985]
We propose a novel large kernel attention (LKA) module to enable self-adaptive and long-range correlations in self-attention.
We also introduce a novel neural network based on LKA, namely Visual Attention Network (VAN)
VAN outperforms the state-of-the-art vision transformers and convolutional neural networks with a large margin in extensive experiments.
arXiv Detail & Related papers (2022-02-20T06:35:18Z) - GCA-Net : Utilizing Gated Context Attention for Improving Image Forgery
Localization and Detection [0.9883261192383611]
We propose a novel Gated Context Attention Network (GCA-Net) that utilizes the non-local attention block for global context learning.
We show that our method outperforms state-of-the-art networks by an average of 4.2%-5.4% AUC on multiple benchmark datasets.
arXiv Detail & Related papers (2021-12-08T14:13:14Z) - Less is More: Pay Less Attention in Vision Transformers [61.05787583247392]
Less attention vIsion Transformer builds upon the fact that convolutions, fully-connected layers, and self-attentions have almost equivalent mathematical expressions for processing image patch sequences.
The proposed LIT achieves promising performance on image recognition tasks, including image classification, object detection and instance segmentation.
arXiv Detail & Related papers (2021-05-29T05:26:07Z) - Contrastive Learning for Compact Single Image Dehazing [41.83007400559068]
We propose a novel contrastive regularization (CR) built upon contrastive learning to exploit both the information of hazy images and clear images as negative and positive samples.
CR ensures that the restored image is pulled to closer to the clear image and pushed to far away from the hazy image in the representation space.
Considering trade-off between performance and memory storage, we develop a compact dehazing network based on autoencoder-like framework.
arXiv Detail & Related papers (2021-04-19T14:56:21Z) - An analysis of the transfer learning of convolutional neural networks
for artistic images [1.9336815376402716]
Transfer learning from huge natural image datasets has become de facto the core of art analysis applications.
In this paper, we first use techniques for visualizing the network internal representations in order to provide clues to the understanding of what the network has learned on artistic images.
We provide a quantitative analysis of the changes introduced by the learning process thanks to metrics in both the feature and parameter spaces, as well as metrics computed on the set of maximal activation images.
arXiv Detail & Related papers (2020-11-05T09:45:32Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
We propose a pairwise relation-based semi-supervised (PRS2) model for gland segmentation on histology images.
This model consists of a segmentation network (S-Net) and a pairwise relation network (PR-Net)
We evaluate our model against five recent methods on the GlaS dataset and three recent methods on the CRAG dataset.
arXiv Detail & Related papers (2020-08-06T15:02:38Z) - DeepEMD: Differentiable Earth Mover's Distance for Few-Shot Learning [122.51237307910878]
We develop methods for few-shot image classification from a new perspective of optimal matching between image regions.
We employ the Earth Mover's Distance (EMD) as a metric to compute a structural distance between dense image representations.
To generate the important weights of elements in the formulation, we design a cross-reference mechanism.
arXiv Detail & Related papers (2020-03-15T08:13:16Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.