Robust pedestrian detection in thermal imagery using synthesized images
- URL: http://arxiv.org/abs/2102.02005v1
- Date: Wed, 3 Feb 2021 11:08:31 GMT
- Title: Robust pedestrian detection in thermal imagery using synthesized images
- Authors: My Kieu, Lorenzo Berlincioni, Leonardo Galteri, Marco Bertini, Andrew
D. Bagdanov, Alberto Del Bimbo
- Abstract summary: We propose a method for improving pedestrian detection in the thermal domain using two stages.
First, a generative data augmentation approach is used, then a domain adaptation method using generated data adapts an RGB pedestrian detector.
Our detector achieves the best single-modality detection results on KAIST with respect to the state-of-the-art.
- Score: 39.33977680993236
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper we propose a method for improving pedestrian detection in the
thermal domain using two stages: first, a generative data augmentation approach
is used, then a domain adaptation method using generated data adapts an RGB
pedestrian detector. Our model, based on the Least-Squares Generative
Adversarial Network, is trained to synthesize realistic thermal versions of
input RGB images which are then used to augment the limited amount of labeled
thermal pedestrian images available for training. We apply our generative data
augmentation strategy in order to adapt a pretrained YOLOv3 pedestrian detector
to detection in the thermal-only domain. Experimental results demonstrate the
effectiveness of our approach: using less than 50\% of available real thermal
training data, and relying on synthesized data generated by our model in the
domain adaptation phase, our detector achieves state-of-the-art results on the
KAIST Multispectral Pedestrian Detection Benchmark; even if more real thermal
data is available adding GAN generated images to the training data results in
improved performance, thus showing that these images act as an effective form
of data augmentation. To the best of our knowledge, our detector achieves the
best single-modality detection results on KAIST with respect to the
state-of-the-art.
Related papers
- DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - Toward Data-Driven STAP Radar [23.333816677794115]
We characterize our data-driven approach to space-time adaptive processing (STAP) radar.
We generate a rich example dataset of received radar signals by randomly placing targets of variable strengths in a predetermined region.
For each data sample within this region, we generate heatmap tensors in range, azimuth, and elevation of the output power of a beamformer.
In an airborne scenario, the moving radar creates a sequence of these time-indexed image stacks, resembling a video.
arXiv Detail & Related papers (2022-01-26T02:28:13Z) - Meta-UDA: Unsupervised Domain Adaptive Thermal Object Detection using
Meta-Learning [64.92447072894055]
Infrared (IR) cameras are robust under adverse illumination and lighting conditions.
We propose an algorithm meta-learning framework to improve existing UDA methods.
We produce a state-of-the-art thermal detector for the KAIST and DSIAC datasets.
arXiv Detail & Related papers (2021-10-07T02:28:18Z) - Object Detection in Thermal Spectrum for Advanced Driver-Assistance
Systems (ADAS) [0.5156484100374058]
Object detection in thermal infrared spectrum provides more reliable data source in low-lighting conditions and different weather conditions.
This paper is about exploring and adapting state-of-the-art object and vision framework on thermal vision with seven distinct classes for advanced driver-assistance systems (ADAS)
The trained network variants on public datasets are validated on test data with three different test approaches.
The efficacy of trained networks is tested on locally gathered novel test-data captured with an uncooled LWIR prototype thermal camera.
arXiv Detail & Related papers (2021-09-20T21:38:55Z) - Can Synthetic Data Improve Object Detection Results for Remote Sensing
Images? [15.466412729455874]
We propose the use of realistic synthetic data with a wide distribution to improve the performance of remote sensing image aircraft detection.
We randomly set the parameters during rendering, such as the size of the instance and the class of background images.
In order to make the synthetic images more realistic, we refine the synthetic images at the pixel level using CycleGAN with real unlabeled images.
arXiv Detail & Related papers (2020-06-09T02:23:22Z) - Exploring Thermal Images for Object Detection in Underexposure Regions
for Autonomous Driving [67.69430435482127]
Underexposure regions are vital to construct a complete perception of the surroundings for safe autonomous driving.
The availability of thermal cameras has provided an essential alternate to explore regions where other optical sensors lack in capturing interpretable signals.
This work proposes a domain adaptation framework which employs a style transfer technique for transfer learning from visible spectrum images to thermal images.
arXiv Detail & Related papers (2020-06-01T09:59:09Z) - Unsupervised Image-generation Enhanced Adaptation for Object Detection
in Thermal images [4.810743887667828]
This paper proposes an unsupervised image-generation enhanced adaptation method for object detection in thermal images.
To reduce the gap between visible domain and thermal domain, the proposed method manages to generate simulated fake thermal images.
Experiments demonstrate the effectiveness and superiority of the proposed method.
arXiv Detail & Related papers (2020-02-17T04:53:30Z) - Radioactive data: tracing through training [130.2266320167683]
We propose a new technique, emphradioactive data, that makes imperceptible changes to this dataset such that any model trained on it will bear an identifiable mark.
Given a trained model, our technique detects the use of radioactive data and provides a level of confidence (p-value)
Our method is robust to data augmentation and backdoority of deep network optimization.
arXiv Detail & Related papers (2020-02-03T18:41:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.