Learning High Dimensional Wasserstein Geodesics
- URL: http://arxiv.org/abs/2102.02992v2
- Date: Mon, 8 Feb 2021 01:33:56 GMT
- Title: Learning High Dimensional Wasserstein Geodesics
- Authors: Shu Liu, Shaojun Ma, Yongxin Chen, Hongyuan Zha, Haomin Zhou
- Abstract summary: We propose a new formulation and learning strategy for computing the Wasserstein geodesic between two probability distributions in high dimensions.
By applying the method of Lagrange multipliers to the dynamic formulation of the optimal transport (OT) problem, we derive a minimax problem whose saddle point is the Wasserstein geodesic.
We then parametrize the functions by deep neural networks and design a sample based bidirectional learning algorithm for training.
- Score: 55.086626708837635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new formulation and learning strategy for computing the
Wasserstein geodesic between two probability distributions in high dimensions.
By applying the method of Lagrange multipliers to the dynamic formulation of
the optimal transport (OT) problem, we derive a minimax problem whose saddle
point is the Wasserstein geodesic. We then parametrize the functions by deep
neural networks and design a sample based bidirectional learning algorithm for
training. The trained networks enable sampling from the Wasserstein geodesic.
As by-products, the algorithm also computes the Wasserstein distance and OT map
between the marginal distributions. We demonstrate the performance of our
algorithms through a series of experiments with both synthetic and realistic
data.
Related papers
- Sliced Wasserstein with Random-Path Projecting Directions [49.802024788196434]
We propose an optimization-free slicing distribution that provides a fast sampling for the Monte Carlo estimation of expectation.
We derive the random-path slicing distribution (RPSD) and two variants of sliced Wasserstein, i.e., the Random-Path Projection Sliced Wasserstein (RPSW) and the Importance Weighted Random-Path Projection Sliced Wasserstein (IWRPSW)
arXiv Detail & Related papers (2024-01-29T04:59:30Z) - Linearized Wasserstein dimensionality reduction with approximation
guarantees [65.16758672591365]
LOT Wassmap is a computationally feasible algorithm to uncover low-dimensional structures in the Wasserstein space.
We show that LOT Wassmap attains correct embeddings and that the quality improves with increased sample size.
We also show how LOT Wassmap significantly reduces the computational cost when compared to algorithms that depend on pairwise distance computations.
arXiv Detail & Related papers (2023-02-14T22:12:16Z) - Optimal Neural Network Approximation of Wasserstein Gradient Direction
via Convex Optimization [43.6961980403682]
The computation of Wasserstein gradient direction is essential for posterior sampling problems and scientific computing.
We study the variational problem in the family of two-layer networks with squared-ReLU activations, towards which we derive a semi-definite programming (SDP) relaxation.
This SDP can be viewed as an approximation of the Wasserstein gradient in a broader function family including two-layer networks.
arXiv Detail & Related papers (2022-05-26T00:51:12Z) - Partial Wasserstein Covering [10.52782170493037]
We consider a general task called partial Wasserstein covering with the goal of emulating a large dataset.
We model this problem as a discrete optimization problem with partial Wasserstein divergence as an objective function.
We show that we can efficiently make two datasets similar in terms of partial Wasserstein divergence, including driving scene datasets.
arXiv Detail & Related papers (2021-06-02T01:48:41Z) - Large-Scale Wasserstein Gradient Flows [84.73670288608025]
We introduce a scalable scheme to approximate Wasserstein gradient flows.
Our approach relies on input neural networks (ICNNs) to discretize the JKO steps.
As a result, we can sample from the measure at each step of the gradient diffusion and compute its density.
arXiv Detail & Related papers (2021-06-01T19:21:48Z) - Projection Robust Wasserstein Barycenter [36.97843660480747]
approximating the Wasserstein barycenter is numerically challenging because of the curse of dimensionality.
This paper proposes the projection robust Wasserstein barycenter (PRWB) that mitigates the curse of dimensionality.
arXiv Detail & Related papers (2021-02-05T19:23:35Z) - Continuous Wasserstein-2 Barycenter Estimation without Minimax
Optimization [94.18714844247766]
Wasserstein barycenters provide a geometric notion of the weighted average of probability measures based on optimal transport.
We present a scalable algorithm to compute Wasserstein-2 barycenters given sample access to the input measures.
arXiv Detail & Related papers (2021-02-02T21:01:13Z) - Two-sample Test using Projected Wasserstein Distance [18.46110328123008]
We develop a projected Wasserstein distance for the two-sample test, a fundamental problem in statistics and machine learning.
A key contribution is to couple optimal projection to find the low dimensional linear mapping to maximize the Wasserstein distance between projected probability distributions.
arXiv Detail & Related papers (2020-10-22T18:08:58Z) - Scalable Computations of Wasserstein Barycenter via Input Convex Neural
Networks [15.171726731041055]
Wasserstein Barycenter is a principled approach to represent the weighted mean of a given set of probability distributions.
We present a novel scalable algorithm to approximate the Wasserstein Barycenters aiming at high-dimensional applications in machine learning.
arXiv Detail & Related papers (2020-07-08T22:41:18Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
We propose a novel numerical scheme to optimize the gradient flows for learning energy-based models (EBMs)
We derive a second-order Wasserstein gradient flow of the global relative entropy from Fokker-Planck equation.
Compared with existing schemes, Wasserstein gradient flow is a smoother and near-optimal numerical scheme to approximate real data densities.
arXiv Detail & Related papers (2019-10-31T02:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.