Symbolic Behaviour in Artificial Intelligence
- URL: http://arxiv.org/abs/2102.03406v1
- Date: Fri, 5 Feb 2021 20:07:14 GMT
- Title: Symbolic Behaviour in Artificial Intelligence
- Authors: Adam Santoro, Andrew Lampinen, Kory Mathewson, Timothy Lillicrap,
David Raposo
- Abstract summary: We argue that the path towards symbolically fluent AI begins with a reinterpretation of what symbols are.
We then outline how this interpretation unifies the behavioural traits humans exhibit when they use symbols.
We suggest that AI research explore social and cultural engagement as a tool to develop the cognitive machinery necessary for symbolic behaviour to emerge.
- Score: 8.849576130278157
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to use symbols is the pinnacle of human intelligence, but has yet
to be fully replicated in machines. Here we argue that the path towards
symbolically fluent artificial intelligence (AI) begins with a reinterpretation
of what symbols are, how they come to exist, and how a system behaves when it
uses them. We begin by offering an interpretation of symbols as entities whose
meaning is established by convention. But crucially, something is a symbol only
for those who demonstrably and actively participate in this convention. We then
outline how this interpretation thematically unifies the behavioural traits
humans exhibit when they use symbols. This motivates our proposal that the
field place a greater emphasis on symbolic behaviour rather than particular
computational mechanisms inspired by more restrictive interpretations of
symbols. Finally, we suggest that AI research explore social and cultural
engagement as a tool to develop the cognitive machinery necessary for symbolic
behaviour to emerge. This approach will allow for AI to interpret something as
symbolic on its own rather than simply manipulate things that are only symbols
to human onlookers, and thus will ultimately lead to AI with more human-like
symbolic fluency.
Related papers
- Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - Intersymbolic AI: Interlinking Symbolic AI and Subsymbolic AI [3.20902205123321]
Intersymbolic AI combines symbolic and subsymbolic AI to increase the effectiveness of AI.
The way Intersymbolic AI combines both symbolic and subsymbolic AI is likened to the way that the combination of both conscious and subconscious thought increases the effectiveness of human thought.
arXiv Detail & Related papers (2024-06-17T14:01:59Z) - Symbol-LLM: Leverage Language Models for Symbolic System in Visual Human
Activity Reasoning [58.5857133154749]
We propose a new symbolic system with broad-coverage symbols and rational rules.
We leverage the recent advancement of LLMs as an approximation of the two ideal properties.
Our method shows superiority in extensive activity understanding tasks.
arXiv Detail & Related papers (2023-11-29T05:27:14Z) - The Roles of Symbols in Neural-based AI: They are Not What You Think! [25.450989579215708]
We present a novel neuro-symbolic hypothesis and a plausible architecture for intelligent agents.
Our hypothesis and associated architecture imply that symbols will remain critical to the future of intelligent systems.
arXiv Detail & Related papers (2023-04-26T15:33:41Z) - Emergence of Symbols in Neural Networks for Semantic Understanding and
Communication [8.156761369660096]
We propose a solution to endow neural networks with the ability to create symbols, understand semantics, and achieve communication.
SEA-net generates symbols that dynamically configure the network to perform specific tasks.
These symbols capture compositional semantic information that allows the system to acquire new functions purely by symbolic manipulation or communication.
arXiv Detail & Related papers (2023-04-13T10:13:00Z) - Aligning Robot and Human Representations [50.070982136315784]
We argue that current representation learning approaches in robotics should be studied from the perspective of how well they accomplish the objective of representation alignment.
We mathematically define the problem, identify its key desiderata, and situate current methods within this formalism.
arXiv Detail & Related papers (2023-02-03T18:59:55Z) - Deep Symbolic Learning: Discovering Symbols and Rules from Perceptions [69.40242990198]
Neuro-Symbolic (NeSy) integration combines symbolic reasoning with Neural Networks (NNs) for tasks requiring perception and reasoning.
Most NeSy systems rely on continuous relaxation of logical knowledge, and no discrete decisions are made within the model pipeline.
We propose a NeSy system that learns NeSy-functions, i.e., the composition of a (set of) perception functions which map continuous data to discrete symbols, and a symbolic function over the set of symbols.
arXiv Detail & Related papers (2022-08-24T14:06:55Z) - Diagnosing AI Explanation Methods with Folk Concepts of Behavior [70.10183435379162]
We consider "success" to depend not only on what information the explanation contains, but also on what information the human explainee understands from it.
We use folk concepts of behavior as a framework of social attribution by the human explainee.
arXiv Detail & Related papers (2022-01-27T00:19:41Z) - Emergence of Machine Language: Towards Symbolic Intelligence with Neural
Networks [73.94290462239061]
We propose to combine symbolism and connectionism principles by using neural networks to derive a discrete representation.
By designing an interactive environment and task, we demonstrated that machines could generate a spontaneous, flexible, and semantic language.
arXiv Detail & Related papers (2022-01-14T14:54:58Z) - Symbols as a Lingua Franca for Bridging Human-AI Chasm for Explainable
and Advisable AI Systems [21.314210696069495]
We argue that the need for (human-understandable) symbols in human-AI interaction seems quite compelling.
In particular, humans would be interested in providing explicit (symbolic) knowledge and advice--and expect machine explanations in kind.
This alone requires AI systems to at least do their I/O in symbolic terms.
arXiv Detail & Related papers (2021-09-21T01:30:06Z) - Philosophical Specification of Empathetic Ethical Artificial
Intelligence [0.0]
An ethical AI must be capable of inferring unspoken rules, interpreting nuance and context, and infer intent.
We use enactivism, semiotics, perceptual symbol systems and symbol emergence to specify an agent.
It has malleable intent because the meaning of symbols changes as it learns, and its intent is represented symbolically as a goal.
arXiv Detail & Related papers (2021-07-22T14:37:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.