Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration
- URL: http://arxiv.org/abs/2102.04110v1
- Date: Mon, 8 Feb 2021 10:26:44 GMT
- Title: Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration
- Authors: Betty van Aken, Jens-Michalis Papaioannou, Manuel Mayrdorfer, Klemens
Budde, Felix A. Gers, Alexander L\"oser
- Abstract summary: Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
- Score: 55.88616573143478
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Outcome prediction from clinical text can prevent doctors from overlooking
possible risks and help hospitals to plan capacities. We simulate patients at
admission time, when decision support can be especially valuable, and
contribute a novel admission to discharge task with four common outcome
prediction targets: Diagnoses at discharge, procedures performed, in-hospital
mortality and length-of-stay prediction. The ideal system should infer outcomes
based on symptoms, pre-conditions and risk factors of a patient. We evaluate
the effectiveness of language models to handle this scenario and propose
clinical outcome pre-training to integrate knowledge about patient outcomes
from multiple public sources. We further present a simple method to incorporate
ICD code hierarchy into the models. We show that our approach improves
performance on the outcome tasks against several baselines. A detailed analysis
reveals further strengths of the model, including transferability, but also
weaknesses such as handling of vital values and inconsistencies in the
underlying data.
Related papers
- SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Ethical considerations of use of hold-out sets in clinical prediction model management [0.4194295877935868]
We focus on the ethical principles of beneficence, non-maleficence, autonomy and justice.
We also discuss statistical issues arising from different hold-out set sampling methods.
arXiv Detail & Related papers (2024-06-05T11:42:46Z) - A machine learning framework for interpretable predictions in patient pathways: The case of predicting ICU admission for patients with symptoms of sepsis [3.5280004326441365]
PatWay-Net is an ML framework designed for interpretable predictions of admission to the intensive care unit for patients with sepsis.
We propose a novel type of recurrent neural network and combine it with multi-layer perceptrons to process the patient pathways.
We demonstrate its utility through a comprehensive dashboard that visualizes patient health trajectories, predictive outcomes, and associated risks.
arXiv Detail & Related papers (2024-05-21T20:31:42Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - Hypergraph Convolutional Networks for Fine-grained ICU Patient
Similarity Analysis and Risk Prediction [15.06049250330114]
The Intensive Care Unit (ICU) is one of the most important parts of a hospital, which admits critically ill patients and provides continuous monitoring and treatment.
Various patient outcome prediction methods have been attempted to assist healthcare professionals in clinical decision-making.
arXiv Detail & Related papers (2023-08-24T05:26:56Z) - Assessing the impact of emergency department short stay units using
length-of-stay prediction and discrete event simulation [1.0822676139724565]
We aim to build a decision support system that predicts hospital length-of-stay for patients admitted to general internal medicine from the emergency department.
We conduct an exploratory data analysis and employ feature selection methods to identify the attributes that result in the best predictive performance.
arXiv Detail & Related papers (2023-08-04T22:26:02Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
We propose a new method that uses medical text of Electronic Health Records for prediction.
We represent discharge summaries of patients with multiview graphs enhanced by an external knowledge graph.
Experimental results prove the effectiveness of our method, yielding state-of-the-art performance.
arXiv Detail & Related papers (2021-12-19T01:45:57Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
It is important that the patient discharge task addresses the nuanced trade-off between decreasing a patient's length of stay and the risk of readmission or even death following the discharge decision.
This work introduces an end-to-end general framework for capturing this trade-off to recommend optimal discharge timing decisions.
A data-driven approach is used to derive a parsimonious, discrete state space representation that captures a patient's physiological condition.
arXiv Detail & Related papers (2021-12-17T04:39:33Z) - Literature-Augmented Clinical Outcome Prediction [10.46990394710927]
We introduce techniques to help bridge this gap between EBM and AI-based clinical models.
We propose a novel system that automatically retrieves patient-specific literature based on intensive care (ICU) patient information.
Our model is able to substantially boost predictive accuracy on three challenging tasks in comparison to strong recent baselines.
arXiv Detail & Related papers (2021-11-16T11:19:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.