An application of a pseudo-parabolic modeling to texture image
recognition
- URL: http://arxiv.org/abs/2102.05001v1
- Date: Tue, 9 Feb 2021 18:08:42 GMT
- Title: An application of a pseudo-parabolic modeling to texture image
recognition
- Authors: Joao B. Florindo, Eduardo Abreu
- Abstract summary: We present a novel methodology for texture image recognition using a partial differential equation modeling.
We employ the pseudo-parabolic Buckley-Leverett equation to provide a dynamics to the digital image representation and collect local descriptors from those images evolving in time.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we present a novel methodology for texture image recognition
using a partial differential equation modeling. More specifically, we employ
the pseudo-parabolic Buckley-Leverett equation to provide a dynamics to the
digital image representation and collect local descriptors from those images
evolving in time. For the local descriptors we employ the magnitude and signal
binary patterns and a simple histogram of these features was capable of
achieving promising results in a classification task. We compare the accuracy
over well established benchmark texture databases and the results demonstrate
competitiveness, even with the most modern deep learning approaches. The
achieved results open space for future investigation on this type of modeling
for image analysis, especially when there is no large amount of data for
training deep learning models and therefore model-based approaches arise as
suitable alternatives.
Related papers
- Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - Scaling Laws of Synthetic Images for Model Training ... for Now [54.43596959598466]
We study the scaling laws of synthetic images generated by state of the art text-to-image models.
We observe that synthetic images demonstrate a scaling trend similar to, but slightly less effective than, real images in CLIP training.
arXiv Detail & Related papers (2023-12-07T18:59:59Z) - Sequential Modeling Enables Scalable Learning for Large Vision Models [120.91839619284431]
We introduce a novel sequential modeling approach which enables learning a Large Vision Model (LVM) without making use of any linguistic data.
We define a common format, "visual sentences", in which we can represent raw images and videos as well as annotated data sources.
arXiv Detail & Related papers (2023-12-01T18:59:57Z) - CorrEmbed: Evaluating Pre-trained Model Image Similarity Efficacy with a
Novel Metric [6.904776368895614]
We evaluate the viability of the image embeddings from pre-trained computer vision models using a novel approach named CorrEmbed.
Our approach computes the correlation between distances in image embeddings and distances in human-generated tag vectors.
Our method also identifies deviations from this pattern, providing insights into how different models capture high-level image features.
arXiv Detail & Related papers (2023-08-30T16:23:07Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z) - Meta Internal Learning [88.68276505511922]
Internal learning for single-image generation is a framework, where a generator is trained to produce novel images based on a single image.
We propose a meta-learning approach that enables training over a collection of images, in order to model the internal statistics of the sample image more effectively.
Our results show that the models obtained are as suitable as single-image GANs for many common image applications.
arXiv Detail & Related papers (2021-10-06T16:27:38Z) - Multi-Branch Deep Radial Basis Function Networks for Facial Emotion
Recognition [80.35852245488043]
We propose a CNN based architecture enhanced with multiple branches formed by radial basis function (RBF) units.
RBF units capture local patterns shared by similar instances using an intermediate representation.
We show it is the incorporation of local information what makes the proposed model competitive.
arXiv Detail & Related papers (2021-09-07T21:05:56Z) - Texture image classification based on a pseudo-parabolic diffusion model [0.0]
The proposed approach is tested on the classification of well established benchmark texture databases and on a practical task of plant species recognition.
The good performance can be justified to a large extent by the ability of the pseudo-parabolic operator to smooth possibly noisy details inside homogeneous regions of the image.
arXiv Detail & Related papers (2020-11-14T00:04:07Z) - Reorganizing local image features with chaotic maps: an application to
texture recognition [0.0]
We propose a chaos-based local descriptor for texture recognition.
We map the image into the three-dimensional Euclidean space, iterate a chaotic map over this three-dimensional structure and convert it back to the original image.
The performance of our method was verified on the classification of benchmark databases and in the identification of Brazilian plant species based on the texture of the leaf surface.
arXiv Detail & Related papers (2020-07-15T03:15:01Z) - Contextual Encoder-Decoder Network for Visual Saliency Prediction [42.047816176307066]
We propose an approach based on a convolutional neural network pre-trained on a large-scale image classification task.
We combine the resulting representations with global scene information for accurately predicting visual saliency.
Compared to state of the art approaches, the network is based on a lightweight image classification backbone.
arXiv Detail & Related papers (2019-02-18T16:15:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.