Sub-seasonal forecasting with a large ensemble of deep-learning weather
prediction models
- URL: http://arxiv.org/abs/2102.05107v1
- Date: Tue, 9 Feb 2021 20:14:43 GMT
- Title: Sub-seasonal forecasting with a large ensemble of deep-learning weather
prediction models
- Authors: Jonathan A. Weyn, Dale R. Durran, Rich Caruana, Nathaniel
Cresswell-Clay
- Abstract summary: We present an ensemble prediction system using a Deep Learning Weather Prediction (DLWP) model.
This model uses convolutional neural networks (CNNs) on a cubed sphere grid to produce global forecasts.
Ensemble spread is primarily produced by randomizing the CNN training process to create a set of 32 DLWP models.
- Score: 6.882042556551611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an ensemble prediction system using a Deep Learning Weather
Prediction (DLWP) model that recursively predicts key atmospheric variables
with six-hour time resolution. This model uses convolutional neural networks
(CNNs) on a cubed sphere grid to produce global forecasts. The approach is
computationally efficient, requiring just three minutes on a single GPU to
produce a 320-member set of six-week forecasts at 1.4{\deg} resolution.
Ensemble spread is primarily produced by randomizing the CNN training process
to create a set of 32 DLWP models with slightly different learned weights.
Although our DLWP model does not forecast precipitation, it does forecast total
column water vapor, and it gives a reasonable 4.5-day deterministic forecast of
Hurricane Irma. In addition to simulating mid-latitude weather systems, it
spontaneously generates tropical cyclones in a one-year free-running
simulation. Averaged globally and over a two-year test set, the ensemble mean
RMSE retains skill relative to climatology beyond two-weeks, with anomaly
correlation coefficients remaining above 0.6 through six days. Our primary
application is to subseasonal-to-seasonal (S2S) forecasting at lead times from
two to six weeks. Current forecast systems have low skill in predicting one- or
2-week-average weather patterns at S2S time scales. The continuous ranked
probability score (CRPS) and the ranked probability skill score (RPSS) show
that the DLWP ensemble is only modestly inferior in performance to the European
Centre for Medium Range Weather Forecasts (ECMWF) S2S ensemble over land at
lead times of 4 and 5-6 weeks. At shorter lead times, the ECMWF ensemble
performs better than DLWP.
Related papers
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - DUNE: A Machine Learning Deep UNet++ based Ensemble Approach to Monthly, Seasonal and Annual Climate Forecasting [0.0]
A novel Deep UNet++-based Ensemble (DUNE) neural architecture is introduced.
It produces the first AI-based global monthly, seasonal, or annual mean forecast of 2-meter temperatures (T2m) and sea surface temperatures (SST)
These forecasts outperform persistence, climatology, and multiple linear regression for all domains.
arXiv Detail & Related papers (2024-08-12T16:22:30Z) - An ensemble of data-driven weather prediction models for operational sub-seasonal forecasting [0.08106028186803123]
We present an operations-ready multi-model ensemble weather forecasting system.
It is possible to achieve near-state-of-the-art subseasonal-to-seasonal forecasts using a multi-model ensembling approach with data-driven weather prediction models.
arXiv Detail & Related papers (2024-03-22T20:01:53Z) - Attention-Based Ensemble Pooling for Time Series Forecasting [55.2480439325792]
We propose a method for pooling that performs a weighted average over candidate model forecasts.
We test this method on two time-series forecasting problems: multi-step forecasting of the dynamics of the non-stationary Lorenz 63 equation, and one-step forecasting of the weekly incident deaths due to COVID-19.
arXiv Detail & Related papers (2023-10-24T22:59:56Z) - Advancing Parsimonious Deep Learning Weather Prediction using the HEALPix Mesh [3.2785715577154595]
We present a parsimonious deep learning weather prediction model to forecast seven atmospheric variables with 3-h time resolution for up to one-year lead times on a 110-km global mesh.
In comparison to state-of-the-art (SOTA) machine learning (ML) weather forecast models, such as Pangu-Weather and GraphCast, our DLWP-HPX model uses coarser resolution and far fewer prognostic variables.
arXiv Detail & Related papers (2023-09-11T16:25:48Z) - FengWu: Pushing the Skillful Global Medium-range Weather Forecast beyond
10 Days Lead [93.67314652898547]
We present FengWu, an advanced data-driven global medium-range weather forecast system based on Artificial Intelligence (AI)
FengWu is able to accurately reproduce the atmospheric dynamics and predict the future land and atmosphere states at 37 vertical levels on a 0.25deg latitude-longitude resolution.
The results suggest that FengWu can significantly improve the forecast skill and extend the skillful global medium-range weather forecast out to 10.75 days lead.
arXiv Detail & Related papers (2023-04-06T09:16:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - FourCastNet: A Global Data-driven High-resolution Weather Model using
Adaptive Fourier Neural Operators [45.520430157112884]
FourCastNet accurately forecasts high-resolution, fast-timescale variables such as the surface wind speed, precipitation, and atmospheric water vapor.
It has important implications for planning wind energy resources, predicting extreme weather events such as tropical cyclones, extra-tropical cyclones, and atmospheric rivers.
FourCastNet generates a week-long forecast in less than 2 seconds, orders of magnitude faster than IFS.
arXiv Detail & Related papers (2022-02-22T22:19:35Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.